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Replication of parasites in vertebrate hosts is counteracted by the immune response,

generated for their control. In this dissertation we have investigated the role of immune

responses in evolution of microparasites and the maintenance of parasite virulence.

We have developed a theoretical framework for the analysis of the evolution of para-

sites using models of the within-host population dynamics of microparasites during acute

infections in vertebrates. Using this framework we have shown that in contrast with the

generally accepted view, higher levels of stochastic host heterogeneity select for higher

optimal levels of parasite virulence. We have linked the within-host and between-host

dynamics of parasites and demonstrated how the parameters for epidemiological spread of

the disease can be estimated from the within-host dynamics. Furthermore, we have shown

that changes in the terms describing the rate of parasite transmission from infected hosts

and the mechanism of parasite-induced pathogenesis may lead to dramatic differences in

the level of virulence to which a parasite evolves.

We have also found that during chronic viral infections, such as infections of humans

with HIV, simple models do not allow us to estimate the relative contribution of virus

cytopathogenecity (i.e., virulence) and the immune response efficacy in the life-span of

virus-infected cells. We nevertheless have demonstrated how the discrimination between

two processes can be done with additional experimental data available.

Finally, we have shown that simple models that assume particular mechanisms of cell

division and death may give inadequate estimates of cell turnover if the assumptions on

the mechanism of cell death are altered. To avoid this problem, we have proposed a

novel method for the estimation of turnover of immune cells during and after the immune

response to infections that makes very general assumptions regarding the mechanisms of

cell division and death. The method can be applied to cell populations for which the

number of division a given cell has undergone is known.
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Chapter 1

Evolution of microparasites and

maintenance of parasite virulence: a

review

Abstract

Why do parasites harm their hosts? Initially, it has been thought that parasites

should evolve to become avirulent because survival of the parasite is tightly linked

to that of the host. However, for several infections it has been shown that some

degree of harm is required for successful spread of the parasite. Subsequently, it has

been suggested that if the rate of parasite transmission is correlated with virulence

of the parasite, parasites need not evolve to avirulence. Using mathematical models

based on this and other assumptions, many further predictions have been generated

and a few of these have been tested experimentally. Along with the rapid growth of

this adaptive theory of parasite evolution, several nonadaptive explanations for the

existence of virulent parasites have also been proposed.
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1.1 Introduction

Parasitism is an intimate association between organisms of two or more kinds, one in

which, a parasite, obtains benefits from a host which it usually injures (Merriam-Webster

dictionary). Although parasites are generally found as the result of degenerative evolution

and might be considered as an inferior state of development, parasitism is widespread.

While it is difficult to know how many parasites there are in Nature (in part because we

do not know the all hosts), it has been estimated that 10-80% of species parasitize on

other species to some extend (Windsor, 1998; Poulin and Morand, 2000).

While parasites are ubiquitous, we still do not have good understanding of why par-

asitism still exists. It has been (and to some extend still is) believed that parasitism is

an inferior state and is simply due to recent association between two species (Mims et al.,

2001). According to this conventional wisdom, with time parasites should evolve to be-

come avirulent. For several infections, this hypothesis has been rejected on the grounds

that virulence is required for parasite transmission, and several alternative hypotheses

have been formulated to explain the persistence of parasites.

In this paper, I review three hypotheses on the evolution of microparasites and main-

tenance of parasite virulence including the conventional wisdom (Section 1.3.1), adaptive

theory (Section 1.3.2) and non-adaptive explanations (Section 1.3.3), with the main em-

phasis on the adaptive theory of parasite evolution. In particular, for these hypotheses

I discuss their assumptions, predictions generated from the hypotheses, and their experi-

mental tests. Importantly, in this review I focus only on the evolution of microparasites

(or thereafter simply parasites) that are generally defined to include viruses, bacteria,

protozoa (unicellular parasites), and fungi. The reader is also referred to several excellent

reviews of this field emphasizing both experimental and theoretical results (Levin and

Svanborg-Eden, 1990; Bull, 1994; Read, 1994; Frank, 1996; Ebert and Herre, 1996; Levin,

1996; Lipsitch and Moxon, 1997; Ebert, 1999; Read et al., 1999; Schall, 2002; Sabelis and

Metz, 2002; Galvani, 2003; Ebert and Bull, 2003). But first, before going into details of
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these hypotheses, I will discuss what is virulence and what are the adequate measures of

virulence.

1.2 What is virulence?

There have been many discussions on what virulence is in different fields (for example,

see recent reviews by Poulin and Combes (1999) and Weiss (2002)). In microbiology, for

example, virulence is defined as an ability of the parasite (mainly bacteria and viruses) to

replicate in a host (Tortora et al., 1992; Mims et al., 2001). Genes providing the parasite

with such an ability are therefore called “virulence factors” (Finlay and Falkow, 1997).

In plant biology, parasite virulence is usually but not always associated with an ability of

the parasite to infect the host (Read, 1994; Poulin and Combes, 1999; Thrall and Burdon,

2003). While it is hard to find a universally acceptable definition, in the field of the

evolution of infectious diseases, virulence is generally defined as the reduction in host’s

fitness due to infection with the parasite (Bull, 1994; Ebert and Herre, 1996).

According to this definition, virulence of a parasite is proportional to the reduction in

the number of offsprings, survived to reproductive age, produced by a parasite-infected

host in comparison with an uninfected host. In practice, however, this parameter is rarely

measured. Instead, other indirect alternative measures of the reduction of host fitness due

to infection have been applied. Among the most widely used are the following: (i) the

case mortality (a probability that an infected host will die following infection), (ii) the

parasite-induced host mortality rate (the rate at which hosts in the population die due

to infection with the parasite), (iii) the average life-span of infected hosts, (iv) the lethal

dose 50, LD50 (an initial dose of the parasite required to kill 50% of infected hosts during

the infection), and (v) the within-host parasite’s growth rate r. While case mortality and

host mortality rate are more direct measures of virulence, LD50 and r are clearly not.

Given many alternative measures to choose from, optimally, the virulence measure

used should represent the reduction in host fitness due to the infection as close as possi-



4

ble. Sometimes, however, it is not achieved, and for some infections, conventionally used

measures of virulence may be truly inadequate.

For example, many parasites that achieve high densities within their hosts cease host

reproduction (Baudoin, 1975). If infection occurs early in life and is life-long, such castra-

tion represents a large reduction in host’s fitness. On the other hand, since infected hosts

generally do not die following infection and in some cases may survive longer because more

resources are devoted to the growth (Baudoin, 1975; Ballabeni, 1995), such parasites are

relatively avirulent if virulence is measured by the case mortality or host mortality rate

(virulence measures employed in most mathematical models of parasite evolution).

In some cases, it might even be impossible to compare different infections by their vir-

ulence using alternative virulence measures. For example, which infection is more virulent

for humans, smallpox or HIV? Smallpox can have case mortality up to 40% (Behbehani,

1983; Berche, 2001) while HIV is nearly 100% lethal (Buchbinder et al., 1994). On the

other hand, the duration of infection with smallpox until the host’s death or recovery is

less than one month while in HIV infection it takes on average 10-12 years for infected

hosts to die if untreated (Longini et al., 1989; Longini, 1990; Buchbinder et al., 1994;

Mellors et al., 1996). This can be translated into the host mortality rate for smallpox

α = 0.4/30 ≈ 1.3 ·10−2 day−1 and HIV α = 1/(10 ·365) ≈ 2.7 ·10−4 day−1. Obviously, two

measures of virulence (case mortality and host mortality rate) rank these two infections

differently. But which of these two measures is more appropriate to estimate virulence of

each infection?

Since acute infections by definition are infections of short duration, it is likely that the

parasite causing the infection will reduce host’s reproductive success only if the host does

not survive the infection. Therefore, if infection occurs early in life and does not impose

any long-term consequences on subsequent survival and reproduction of hosts survived the

infection, the most appropriate measure for virulence of parasites causing acute infections

(such as smallpox) is the case mortality. In contrast, chronic infections often last for the

life-span of an infected individual. If infected hosts reproduce less than uninfected hosts,
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then the host mortality rate due to infection, that is case mortality
duration of infection , is the appropriate

measure for virulence of parasites causing chronic, persistent infections (such as HIV).

Thus, smallpox and HIV cannot be compared by their virulence if one uses alternative

measures of virulence. However, the infections can be compared if one estimates the

true reduction of host fitness due to these infections, the task clearly more difficult than

estimation of case mortality or host mortality rate.

1.3 Why are parasites virulent?

In this section, I review three hypotheses for the evolution of parasite virulence including

the conventional wisdom hypothesis (Section 1.3.1) and adaptive (Section 1.3.2) and non-

adaptive (Section 1.3.3) explanations.

1.3.1 “You shall not murder”: a conventional wisdom

“Given enough time, a state of peaceful coexistence eventually becomes es-

tablished between any host and any parasite. . . Throughout nature, infection

without disease is the rule rather than the exception.” (Dubos, 1965, p. 190)

“It is a conflict between man and his parasites which, in a constant environ-

ment, would tend to result in a virtual equilibrium, a climax state, in which

both species would survive indefinitely ” (Burnet and White, 1972, p. 20-21)

“In general terms where two organisms have developed a host-parasite rela-

tionship, the survival of the parasite species is best served, not by destruction

of the host, but by the development of a balanced condition in which sufficient

of the substance of the host is consumed to allow the parasite’s growth and

multiplication, but not sufficient to kill the host.” (Burnet and White, 1972,

p. 29)
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“. . . from an evolutionary point of view, successful microbes must avoid extinc-

tion, persist in the world, multiply, and leave descendants.” (Mims et al., 2001,

p. 3)

Parasites require their hosts for replication and transmission and death of the host

often means death for the parasite. A conventional wisdom suggests that parasites should

evolve to reduce the damage done to the host and eventually to become avirulent. This

pacifistic view on parasite evolution became widely spread in part because of influential

books by Dubos (1965) and Burnet & White (1972).

There are two major observations that are used in support of this hypothesis. First,

many parasites do not cause severe disease in their natural hosts, i.e., in hosts where long

coevolutionary history of the parasite and its host is known or suspected. For example,

myxoma virus induces a very mild disease when infects its natural host, the American

rabbit (Fenner and Ratcliffe, 1965). Simian Immunodeficiency virus (SIV) infection of

natural hosts such as SIVsm infection of sooty mangabeys or SIVagm infection of green

monkeys does not lead to immunodeficiency despite rapid replication of the virus and

high rates of T-cell turnover (Rey-Cuille et al., 1998; Chakrabarti et al., 2000; Diop et al.,

2000). Many Orthomyxo-, Arena-, and Hantaviruses cause asymptomatic infection in

their natural hosts (influenza A in birds, arena and hantaviruses in rodents) (Murphy and

Webster, 1996; Peters et al., 1996; Lednicky, 2003). Causing little pathology and being

successfully transmitted are therefore ideal traits of the parasite.

Second, some parasites are extremely virulent when they encounter a novel host1.

With time, parasite virulence (generally associated with the severity and incidence of

the parasite-caused disease) declined. Several infections that have been brought into the

New World by Europeans such as smallpox, measles, and influenza appear to follow this

pattern. Initial severity of these infections in Indian populations is well known (Dubos,

1It should be emphasized, however, that these examples are rather exceptions than the rule since many

such encounters most likely occur unnoticed due to inability of the parasite to replicate in a new host

(Ebert, 1998).
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1965; Burnet and White, 1972; Mims et al., 2001). The reasons for such initial severity and

its decline with time, however, are still debated (Black, 1992). Both these observations

have been interpreted that parasites evolve to cause less harm to their hosts.

It is important to emphasize that the decrease in parasite virulence has not been

directly measured in these examples. The only well documented change in virulence of

a parasite after introduction into a new population is the evolution of myxoma virus

in Australian populations of European rabbits (reviewed in (Fenner and Ratcliffe, 1965;

Fenner and Fantini, 1999)). The initially introduced myxoma virus strain was very lethal

to wild and laboratory rabbits (with case mortality > 99%). In several years following the

introduction, the average virulence level of the virus as measured in laboratory rabbits

has declined (see Figure 1.1), in accord with the prediction of the conventional wisdom

hypothesis. Later, however, rabbits became more resistant and that in turn led to the

selection of more virulent strains of the virus that currently kills approximately 50% of

wild and more than 99% of laboratory rabbits (Fenner and Fantini, 1999; Merchant et al.,

2003b; Kerr et al., 2003; Merchant et al., 2003a, see Figure 1.1).

It is generally interpreted that conventional wisdom assumes that parasites should

evolve to avirulence. While this might be generally correct, some examples on the evolu-

tion of infectious diseases given, for instance, by Dubos (1965) imply that host evolution

may be an important factor and that changes in host resistance might be responsible for

lowering virulence of human parasites (Dubos, 1965). One example where most likely

host evolution towards resistance resulted in a relative benign infection is myxomatosis.

The myxoma virus causes very mild disease in its natural host, American rabbits Sylvila-

gus brasiliensis and S. bachmani, and initially caused severe disease in European rabbits

in Australia (Fenner and Ratcliffe, 1965; Fenner and Fantini, 1999). Although there have

been changes in virulence of the virus since its first introduction in Australian rabbit popu-

lations as well as in the resistance of rabbits, the virus is still quite virulent. Immunological

studies of myxoma pathogenesis in resistant and susceptible rabbits suggest that it is the

host immune response that limits the spread of the virus in resistant rabbits, but causes
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Figure 1.1: Changes in the level of average virulence of the myxoma virus and average

resistance of rabbits after introduction of the virus in rabbit populations in Australia. Left

panel shows the changes in average virulence. Average virulence was calculated using the

prevalence data on the different strains of the virus and assigning arbitrary value 1 to the

most virulent strain (grade I) and 1/5 to the least virulent strain (grade V). Data are taken

from Fenner and Fantini (1999). Right panel shows the changes in average resistance after

several epidemics at the lake Urana in Australia. Average resistance was calculated as a

fraction of survived hosts after challenge of nonimmune rabbits with the virus of grade III

virulence. Data are from Fenner (1983).

pathology in susceptible hosts (Best and Kerr, 2000; Kerr and McFadden, 2002). Sim-

ilarly, SIVsm/HIV-2 is non-pathogenic in its natural host, sooty mangabeys, yet causes

AIDS in infected humans (Peeters et al., 1991; Rey-Cuille et al., 1998; Chakrabarti et al.,

2000). Thus, host evolution rather than parasite evolution may be the reason why some

infections are mild.

One of the shortcomings of the conventional wisdom hypothesis is that it is hard to

test it. For some infections, however, this hypothesis has been rejected on the grounds

that some virulence was required for the infection to be transmitted. For example, water

diarrhea caused by V. cholera appears to enhance the transmission rate of the bacteria.

Some other parasites are transmitted only from dead hosts and thus killing the host may

be advantageous for such parasites (Lafferty, 1999; Ebert and Weisser, 1997; Ebert et al.,
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2000).

While some infections of humans, such as smallpox and TB, have been in the human

population for thousands of years, it still could be argued that not enough time has passed

to select for strains with reduced virulence. This argument of “insufficient time” that could

be applied to many virulent infections is not easy to reject because we don’t have good

estimates of how long it should take for a parasite to become avirulent. From the serial

passage experiments (SPEs) we know that parasites can evolve quite rapidly (reviewed

in Ebert (1998)). However, it is not clear if rates of parasite evolution observed in SPEs

are close to natural since in SPEs very high numbers of parasites are transferred in a

non-natural way such as using syringe needles. On the other hand, a rapid change in

average virulence of the myxoma virus after the initial introduction (Fenner and Ratcliffe,

1965) and a rapid decline in prevalence of toxin-producing bacteria (C. diphtheriae and B.

pertussis) following introduction of anti-toxin vaccines (Taranger et al., 2001; Soubeyrand

and Plotkin, 2002) does suggest that parasites may evolve their virulence in a matter of

years.

This is at least one area in which theory could provide some answers. It is often

emphasized that parasites may evolve more quickly than their hosts because of their large

population sizes and short generation times (Mims et al., 2001). However, new infections

are generally initiated by only a few parasites (Sacristan et al., 2003), and therefore,

the effective population size of parasites may be much less than the size reached by the

parasite in a given infected host. How this and other factors may affect the rate of parasite

evolution has not yet been addressed (De Leo and Dobson, 2002).

1.3.2 “Enlightened theory”: the adaptive theory of parasite evo-

lution

“Although successful parasites cannot afford to become too pathogenic, some

degree of tissue damage may be necessary for the effective shedding of microor-
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ganisms to the exterior, as for instance in the flow of infected fluids form the

nose in the common cold or from the alimentary canal in infectious diarrhoea.”

(Mims et al., 2001, p. 5)

The conventional wisdom has failed to realize that parasites evolve to maximize their

reproductive success and not the duration of infection or the probability of species survival.

In some cases reproductive success of a parasite can be calculated as the number of newly

infected hosts during the infection. Although a large duration of infection is beneficial to

the parasite, having a shorter infection may be still advantageous if shorter duration is

compensated by an increase in the infection rate of new hosts. Therefore, this trade-off

between the rate of infection and the duration of infection will determine the optimal

parasite infectivity and duration of infection if parasites evolve in the presence of such a

trade-off. A shorter duration of infection generally is associated with higher virulence of

the parasite measured by the host mortality rate. The suggestion that parasites evolve in

the presence of such a trade-off (or additional trade-offs) is the backbone of the adaptive

theory of parasite evolution. There has been a number of experimental studies aimed to

examine the assumptions of the adaptive theory and theoretical studies aimed to make

further predictions on the evolution of parasites assuming that the trade-offs are present.

Anderson and May (1982) in their influential paper proposed a theoretical framework

for the analysis of the evolution of parasites. For the epidemiological spread of the infection

caused by a parasite, they considered the basic reproductive number of the parasite, R0,

that is, the average number of new infections caused by an infected host introduced into

a wholly susceptible population. For directly transmitted infections R0 is:

R0 =
βN

d + α + ν
, (1.1)

where β is the rate of parasite transmission from infected hosts2 and α, d and ν are the rate

constants for the parasite-induced and natural host mortality and recovery, respectively,

2and simultaneously, the rate of infection of susceptible hosts.
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and N is the density of susceptible hosts. In this model, the parasite-induced host mortality

rate α is taken as a measure of virulence.

If an infected host can be occupied only by one parasite strain, then the parasite with

the maximal R0 will exclude others from the population (Anderson and May, 1982; Bre-

mermann and Thieme, 1989). If β, α, and ν are all independent, then selection will favor

parasites that are highly infectious (β → ∞), avirulent (α → 0), and causing persistent

infections with no recovery (ν → 0). Based on experimental observations Anderson and

May proposed that these parameters at least for some infections may not be independent.

For example, transmissibility and host recovery rate may depend on the parasite-induced

host mortality rate, β = β(α) and ν = ν(α). Such dependencies are often called trade-offs

even though the correlation β = β(α) when it exists is generally positive. For some appro-

priately chosen functions β(α) and ν(α), the maximum of R0 is achieved at intermediate

levels of α.

Anderson and May used this theory to predict the optimal level of virulence of the

myxoma virus evolving in populations of European rabbits in Australia after its initial

introduction in 1950 (Figure 1.1). After the introduction of a very virulent virus strain,

virus virulence declined dramatically for the following several years and was stably main-

tained for some time at intermediate levels. From laboratory experiments it became clear

why virus strains with low and high virulence had lower fitness than strains with inter-

mediate virulence: strains with low virulence caused only mild diseases in rabbits which

survived for long periods of time. However, the probability of virus transmission from

such rabbits was very small because of small densities of the virus in the skin lesions of

infected hosts. Thus, even at long duration of infection, these strains do not obtain high

total transmission. Similarly, highly virulent strains, were transmitted more efficiently but

only for a very short time, obtaining low total transmission (Fenner and Ratcliffe, 1965).

Using the data on the case mortality (M = α/(α + ν)) and the average duration of

infection in hosts that died following infection (∆ ≈ α−1) caused by different viral strains

(grades I-V), Anderson and May estimated the trade-off between the host recovery rate
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ν and the host mortality rate α (Anderson and May, 1982; May and Anderson, 1983,

Figure 1.2). Using this trade-off and assuming that transmissibility β does not depend on

virulence α, they found the optimal virulence level, at which R0 is maximal (Figure 1.2).

The obtained value, α∗theory ≈ 0.013 day−1, was close to the observed α∗observ ≈ 0.041 day−1

(Fenner and Ratcliffe, 1965; Anderson and May, 1982). This prediction was then improved

by assuming a positive correlation between the probability of parasite transmission from

infected to uninfected hosts for two vectors, fleas and mosquitoes (Massad, 1987; Dwyer

et al., 1990, Figure 1.2). Thus, the trade-offs between parasite transmissibility, host re-

covery rate and parasite-induced host mortality rate determine the level at which parasite

fitness is maximal.

Some of these trade-offs seem to be intuitively obvious. For example, higher average

parasite load in an infected host may generally lead to higher transmissibility and higher

virulence, thus leading to a positive correlation between the two traits. For some infections

such correlation has indeed been found (see Table 1.1 for some examples) but not for others

(Davies et al., 2001).

Two points need to be emphasized. First, many infection of practical interest have not

been rigorously tested as to whether there are trade-offs that may constrain their evolution.

Such studies should establish that (1) there is a variation in the parasite population in

the degree of virulence, and (2) different parasites strains have different fitnesses (for

example, total transmissions) upon which natural selection can act. Despite the absence

of such knowledge, the trade-off hypothesis has been widely used to explain changes in

virulence of many distinct parasites without actual demonstration that the trade-offs for

such infections exist (Ewald, 1994; Dieckmann et al., 2002).

Second, in most of the studies where trade-offs have been established, the causes of

these trade-offs are generally not well understood. It is likely that the causes of the trade-

offs can be simple or complex for different host-parasite associations.

For example, the correlation between transmissibility and virulence may be simply

because of the direct linkage between these two traits. For a horizontally transmitted mi-



13

0 0.02 0.04 0.06 0.08
virulence, day-1

0

1

2

3

4

5

t
o
t
a
l
t
r
a
n
s
m
i
s
s
i
o
n
m
e
a
s
u
r
e α1

* = 0.0129118
α2

* = 0.0400183
1 2

0 0.02 0.04 0.06 0.08
virulence, day-1

0

20

40

60

80

100

%
i
n
f
e
c
t
e
d
v
e
c
t
o
r
s

mosquitoes

fleas

0 0.02 0.04 0.06 0.08
virulence, day-1

0

0.005

0.01

0.015

0.02

0.025

0.03

h
o
s
t
r
e
c
o
v
e
r
y
r
a
t
e
,
d
a
y
-
1

A

B

C

Figure 1.2: Measured trade-offs for the naturally occurring strains of the myxoma virus.

Panel A shows the trade-off between host recovery rate ν and parasite-induced host mor-

tality rate (virulence) α. Panel B shows the trade-off between the probability of parasite

transmission from an infected to susceptible host for two vectors, mosquitoes (4) and fleas

(2). Data are taken from Fenner et al. (1956), Mead-Briggs and Vaughan (1975), and An-

derson and May (1982). Panel C shows the changes in the basic reproductive number R0
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crosporidian parasite Glugoides intestinalis of the water flea Daphnia magna the following

relationships have been established: the number of parasite spores per host is inversely cor-

related with the life-span of infected hosts (i.e., the duration of infection) but is positively

correlated with the amount of parasites expelled into the environment. A higher spore

density in the environment, on the other hand, leads to a higher probability of infection

of uninfected hosts (Ebert, 1994; Mangin et al., 1995; Ebert and Mangin, 1997). Thus, in

this case, the correlation between virulence ([life-span of infected hosts]−1) and transmis-

sibility is simply mechanical: an increase in the parasite production rate may shorten the

infection, but simultaneously leads to an increase in the probability of infection of a new

host.

One the other hand, although measured, the underlying mechanisms of the correlation

between transmissibility and virulence for the malaria parasite of rodents, Plasmodium

chabaudi, are less clear because of the more complex nature of the infection (Mackinnon

and Read, 1999). In this infection virulence, often measured by host morbidity, weight loss

and case mortality following the infection, is caused by the replicating asexual stage of the

parasite (merozoites) mainly by depletion of red blood cells. Transmission to the mosquito

vector is due to a terminally differentiated sexual stage (gametocytes). Because of the

complexity of the differentiation pathway of the asexual to sexual stage in Plasmodium

sp. (Taylor and Read, 1997; Dyer and Day, 2000), the underlying mechanisms of the

correlation between transmissibility and virulence are not well understood.

Importantly, for parasite strains recovered from host populations in Nature, a corre-

lation between transmissibility and virulence may be observed even without a physical

linkage between these two traits. Such a correlation may simply arise because more vir-

ulent parasite strains are evolutionary selected for higher transmissibility. For example,

theoretical studies on the evolution of parasites in spatially heterogeneous environments

suggest that for a given level of virulence (a probability of host dying following infection)

parasites with too low and too high rates of transmission will not be maintained in the host

population (Haraguchi and Sasaki, 2000; Rauch et al., 2003). This is because parasites
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with too low transmissibility on average kill their hosts before they are transmitted while

parasites with high transmissibility infect and kill locally all susceptible hosts and are not

able to be transmitted to next cluster of hosts (Haraguchi and Sasaki, 2000; Rauch et al.,

2003).

Despite these shortcomings, the adaptive theory forms the basis for the analysis of

the evolution of infectious diseases. Its great advantage is that it relies on the trade-offs

to predict evolution of parasites, and therefore, can be rejected if the trade-offs for the

parasite-induced disease are not observed.

Further specific predictions of the adaptive theory, their tests and

critique

Since Anderson and May, many theoretical studies have made specific predictions on how

parasites should evolve in different conditions (for a relatively recent theoretical review see

Frank (1996)). However, only a few of such predictions have been tested experimentally

(see, for example, an excellent discussion by Schall (2002) for the testing of different

predictions of the adaptive theory applied to malaria parasites of lizards).

1.3.2.1 Natural host mortality rate

Many models of parasite evolution predict that an increase in the parasite-independent

host mortality rate should lead to selection of parasites that kill their hosts more rapidly

and therefore are more virulent (Frank, 1996; Ebert and Mangin, 1997; Day, 2002b).

This is simply because a shorter life-span of the host often leads to a shorter duration

of infection that in turn selects for more rapidly replicating parasites. This can also be

seen by maximizing the basic reproductive number R0 given in eqn. (1.1) with respect

to α assuming a positive correlation β = β(α). The optimal virulence level obtained at

β = β0α/(α + c) and given by eqn. (1.4) increases with increasing natural host mortality

rate d. Similarly, a longer host life-span would lead to selection of slower replicating
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parasites with lower virulence. For several experimental systems these predictions have

been tested with variable success (Ebert and Mangin, 1997; Ebert, 1998; Elena, 2001;

Cooper et al., 2002).

In serial passage experiments (SPEs) where parasites are manually transmitted from

an infected to a new host, parasites evolve higher within-host growth rate and concurrently

virulence if the transmission event occurred early in infection (reviewed in Ebert (1998)).

Since early transmission mimics high host mortality rate, this observation is consistent

with the prediction of the adaptive theory. Similarly, parasites that are serially passaged

late during the infection evolve lower growth rate and virulence (Dobson and Owen, 1977;

Elena, 2001; Cooper et al., 2002).

While consistent with the theory, these results cannot be directly applied since trans-

mission in SPEs is generally done manually at one fixed time point and therefore does

not correspond to the natural way of parasite transmission. Ebert and Mangin (1997)

attempted to test the above prediction using a quasi-natural setting. They allowed a mi-

crosporidian parasite (Glugoides intestinalis) to evolve in populations of Daphnia magna

while applying two regimes with high and low natural host mortality. High natural host

mortality was achieved by transferring only 10-20% of hosts into a new aquarium, while

the control (low host mortality) was left unmanipulated. Surprisingly, parasites in the

high mortality rate regime evolved lower growth rate and virulence (measured as the life-

span of infected hosts) than those from the low mortality regime. The authors speculated

that in unmanipulated populations a longer exposure to the parasites in the water led to

an increased frequency of hosts infected with several distinct strains of the parasite (i.e.,

multiply infected hosts). This in turn selected for more rapidly growing parasite strains

(Ebert and Mangin, 1997, Section 1.3.2.4). Although direct evidence for the occurrence of

multiple infections in this experiment was lacking, theoretical analysis does suggest that

when multiple infections are allowed, higher virulence is expected to evolve at low natural

host mortality rate (Gandon et al., 2001a). This is simply because the longer duration of

infection increases the probability of an already infected host to be super-infected with a
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more virulent parasite strain.

Other particular “details” of the infection may also change the prediction of how natural

host mortality affects the optimal level of parasite virulence. For example, if the duration

of infection is much shorter than the average host life-span, then reduction in the host life-

span should not dramatically affect the optimal level of parasite virulence. Furthermore,

theory suggests that higher host mortality can select for lower virulence depending on

whether there is an interaction between parasite-induced and natural host mortality rates

and on how virulence is measured (Williams and Day, 2001; Day, 2002b; Choo et al., 2003).

These examples clearly illustrate that particular details of a given parasite-host association

are important in predicting the evolution and the optimal level of parasite virulence even

if the basic assumptions of the adaptive theory (such as the trade-offs outlined above) are

fulfilled.

1.3.2.2 Host recovery rate/host resistance

It appears that it is difficult to make general predictions on how host resistance would

affect the evolution of parasites because of many ways the resistance can be provided. In

plants and invertebrates resistance is often defined as inability of the parasite to infect the

host (Thrall and Burdon, 2003; Rolff and Siva-Jothy, 2003). In contrast, in vertebrates,

host resistance is often associated with the host ability to mount an effective immune

response to quickly clear the infection.

General theory predicts that an increase in the recovery rate should select for more

virulent parasites (Frank, 1996; Antia and Lipsitch, 1997; van Baalen, 1998; Gilchrist and

Sasaki, 2002; Day and Burns, 2003; Andre et al., 2003). This is, similar to the previous

case, because a higher recovery rate leads to a shorter duration of infection forcing parasites

to evolve higher growth rate and virulence (see also eqn.(1.4)).

In contrast, increased host resistance to the infection (which can be achieved by both

higher recovery rate and resistance to initial infection) may select for higher or lower

virulence level depending on particular mechanisms of resistance (Gandon and Michalakis,
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2000). As far as I know there have been no studies where these predictions have been

rigorously tested. However, an increase in virulence of the myxoma virus following an

increase in resistance of rabbits to the infection in the past few decades in Australia is

consistent with the theoretical prediction (Fenner and Fantini, 1999, Figure 1.1).

Gandon et al. (2001) have proposed that imperfect vaccines that, on the one hand,

increase host resistance, but, on the other hand, allow replication and transmission of

parasites, may lead to evolution of parasites with lower or higher virulence depending on

the type of the vaccine. Vaccines blocking new infections or transmission from infected

hosts are predicted to select for lower virulence because they would reduce the intensity of

superinfection of already infected hosts, and therefore the frequency of multiply infected

hosts. This is turn should select for lower virulence (Section 1.3.2.4). In contrast, vaccines

that reduce the within-host replication rate of parasites or their virulence are expected to

evolve higher virulence in the presence of vaccinated hosts. This is because such vaccines

remove the cost of virulence (Gandon et al., 2001b, 2003).

The assumptions of the mathematical model and generality of its predictions have been

heavily criticized (Smith, 2002; Ebert and Bull, 2003; Andre et al., 2003). This was in part

because the theoretical prediction that vaccination against toxins (i.e., virulence) should

select for more virulent parasite strains was in contrast with the observed reduction in

prevalence of toxin-producing Corynebacterium diphtheriae and Bordetella pertussis after

introduction of anti-toxin vaccines (Soubeyrand and Plotkin, 2002). Toxin production

bears a cost and in the presence of anti-toxin immunity, bacteria not producing toxins

have selective advantage. Although ad hoc changes in the model to include the toxin cost

led to “improved” predictions, this example again emphasizes the role of particular details

in predicting the evolution of parasites.

1.3.2.3 Epidemic vs. endemic diseases (early vs. late transmission)

The adaptive theory assumes that parasites evolve to maximize their reproductive success.

From theoretical studies it became clear that for epidemic and endemic infections the



20

reproductive success of parasites might be calculated in different ways (Frank, 1996). For

epidemic infections the number of susceptible hosts is large and parasite strains that infect

the hosts more rapidly will have selective advantage (Knolle, 1989; Lenski and May, 1994).

Thus, in epidemic infections parasites will maximize the net growth rate of the number

of infected hosts, that for directly transmitted diseases in the absence of the within-host

competition is simply:

r = βN − (α + d + ν), (1.2)

where the parameters are the same as in eq. (1.1). In contrast, for endemic diseases

there is always dearth of susceptible hosts, so parasites that infect the maximum number

of hosts during the infection, will have selective advantage. Thus, in endemic infections

at some conditions3, parasites will maximize their basic reproductive number R0 that for

directly transmitted diseases is given by eq. (1.1) (Anderson and May, 1982; Bremermann

and Thieme, 1989; Frank, 1996).

If there are (appropriate) trade-offs between parasite characteristics both fitness mea-

sures are maximized at intermediate values of virulence. For example, if β = β0α/(α + c)

and ν = const, the optimal virulence for two infection types are:

α∗epidem =
√

cNβ0 − c, (1.3)

α∗endem =
√

c(d + ν). (1.4)

where α∗epidem > α∗endem for any parameter combination. It can be also shown (see Ap-

pendix) that α∗epidem > α∗endem for any trade-off β = β(α) if the host recovery rate depends

weakly on virulence. Importantly, using eqns. (1.3)–(1.4) it is clear that an increase of the

host population size N and/or transmission rate constant β0 (i.e., contract rate) may dra-

3These exclude the presence of within-host competition and density-dependent effects in host repro-

duction and infection (Nowak and May, 1994; May and Nowak, 1995; Bonhoeffer and Nowak, 1994b;

Dieckmann, 2002).
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matically increase optimal virulence of epidemic infections but not of endemic infections

(Frank, 1996).
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Figure 1.3: The relationship between the basic reproductive number R0, the net growth

rate of the epidemic r and the parasite-induced host mortality rate α. The correlation

between the transmission rate and virulence is assumed in the form β = β0α/(α + c).

Parameters are: β0 = 0.01, d = 0.001, c = 1, ν = 0.01, N = 103. Optimum levels of

virulence for epidemic and endemic diseases are: α∗epidem ≈ 2.16 and α∗endem ≈ 0.11. As

shown in the Appendix if ν = const then for any trade-off β = β(α), α∗epidem > α∗endem.

As far as I know there have been no studies designed to test this prediction of the

adaptive theory. There are, however, several observations that are consistent with it. First

includes the increase in virulence of parasites in SPEs (Ebert, 1998). In these experiments,

parasites are generally transmitted early in the infection thus mimicking the initial phase

of an epidemic. On the other hand, selection for later transmission in SPEs that mimics an

endemic leads to reduced virulence (Dobson and Owen, 1977; Elena, 2001; Cooper et al.,

2002). For a more general discussion on how timing of transmission may affect the optimal

level of parasite virulence, see (Day, 2003).

Second, it has been widely argued by Paul Ewald that higher host densities and high

rates of parasite transmission are responsible for outbreaks of highly virulent parasites
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including influenza, cholera and HIV (Ewald, 1991, 1994). Although these arguments

are consistent with the theoretical analysis, experimental data used in support of this

prediction may have other interpretations (Frank, 1996). In addition, there are additional

reasons to question the generality of these predictions applied to these particular infections

as the absence of clear trade-offs between virulence and other traits (Ebert and Bull, 2003).

HIV in particular has drawn much attention in part because of its extreme lethality.

For example, for HIV in particular and for sexually transmitted diseases (STDs) in general,

it has been suggested that an increased contact rate may select for lower virulence because

of the law of diminishing returns (Lipsitch et al., 1995a). STDs should also be less virulent

if they reduce sexual activity of the host (Knell, 1999). Why HIV is virulent still remains

an open question. Ewald suggested that HIV evolved from a less virulent form because of

increased contact rate (Ewald, 1991). Obviously, this need not be the case, because rhesus

macaques infected with SIVsm/HIV-2, a natural parasite of sooty mangabeys, progress

rapidly to AIDS and die (Staprans et al., 1999; Buckley et al., 2003).

We can however ask a question of whether HIV will evolve to a more/less virulent

form (Ganusov, 2003). Levin and Bull (1994) suggested that host immunodeficiency due

to HIV infection may result from the within-host, short-sighted evolution of the virus and

may have nothing to do with the rate of virus transmission (see Section 1.3.3). Therefore,

according to this hypothesis changes in opportunities for transmission should not affect

the optimal virulence of HIV.

However, it has been shown that the duration of HIV infection is inversely correlated

with the virus density in plasma of infected hosts early in the asymptomatic period of the

infection called the set-point (Mellors et al., 1996; Arnaout et al., 1999; Staprans et al.,

1999; Goto et al., 2002). Similarly, viral load is positively correlated with the probability

of heteterosexual transmission of HIV (Pedraza et al., 1999; Quinn et al., 2000; Gray et al.,

2001). Such relationships indicate that there might be a positive correlation between HIV

transmissibility and virulence (measured as the inverse of the duration of infection) for viral

strains with different set-points. Although both host and virus factors play an important
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role in determining the rate of progression to AIDS (Deacon et al., 1995; Magierowska

et al., 1999; Staprans et al., 1999; Theodorou et al., 2003; Buckley et al., 2003), their

relative contribution to the disease progression is not yet understood (Theodorou et al.,

2003). Formally, the correlation between transmissibility and virulence for HIV strains can

be established if genetically identical hosts are infected with different strains of the virus.

Given the lack of inbred strains of monkeys, this can be done, for example, by observing

the disease progression in identical twins infected with different viral strains (Segal and

Hill, 2003).

If the correlation between HIV transmissibility and the duration of infection is estab-

lished, the adaptive theory suggests that HIV virulence will evolve. The exact value of

the optimal level of HIV virulence will be then determined by (1) the exact shape of the

correlation, (2) whether it is endemic or epidemic, and (3) what exactly is maximized by

the virus (Ganusov, 2003).

For example, if the majority of the virus transmission occurs only during the acute

infection, then we cannot predict HIV evolution since currently there is no relationship

between viral load in acute infection and the rate of progression to AIDS (Staprans et al.,

1999). Theoretical analysis suggests that during initial stages of the HIV epidemic the

majority of the virus is transmitted early during the infection (Levin et al., 1996, 2001)

but the relative contribution of acute infection and asymptomatic phase in such early

transmission is not known. If, however, all transmission occurs within the first year of

the infection given that the acute phase lasts for approximately one month, higher viral

loads (and therefore faster progression to AIDS) in the asymptomatic phase may be ad-

vantageous to the virus during an epidemic. Selection (if any) may change as the infection

reaches the endemic regime. Thus, predictions on whether an infection becomes more or

less virulent depends critically on whether it is epidemic or endemic even if the trade-offs

for the infection are established.
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1.3.2.4 Within-host competition: mutation, co- and super-infection

Some of the predictions of the adaptive theory given in previous sections are based on the

assumption that only one parasite strain can occupy a given host. In many instances this

needs not be true. For example, Daphnia magna can be repeatedly infected with the same

microsporidian parasite (Ebert, 1995). Humans infected with malaria often harbor several

different strains of the parasite (Read et al., 2002). There have been several theoretical

results suggesting that allowing competition between different parasite stains within one

host, will select for increased virulence. Parasites evolve higher virulence in this case

because of the risk to share the host with a more virulent parasite strain4. The increase

in the number of parasite strains occupying the same host may result from mutation

(Bonhoeffer and Nowak, 1994b) and co- or superinfection (Sasaki and Iwasa, 1991; Frank,

1992; Nowak and May, 1994; May and Nowak, 1995; van Baalen and Sabelis, 1995; Frank,

1996; Mosquera and Adler, 1998; Leung and Forbes, 1998). Importantly, many predictions

of the adaptive theory change if the within-host competition between parasite strains

in multiply infected hosts is allowed. For example, higher natural host mortality rate

would lead to selection of parasites with lower virulence. This is because with shorter

infection there is less chance of multiple infections, and in particular superinfections, to

occur (Gandon et al., 2001a).

The prediction of the adaptive theory that, in the presence of within-host competi-

tion, parasites should evolve to higher virulence, has been tested in several systems. As

described in Section 1.3.2.1, it was hypothesized that multiple infections were responsible

for increase in virulence of a microsporidian parasite G. intestinalis evolved in a popula-

tion of Daphnia magna with low natural host mortality rate (Ebert and Mangin, 1997).

Mixed-clone infections of mice with malaria parasite P. chabaudi result in higher maximum

weight loss of the host (Taylor and Read, 1998; Read et al., 2002) that correlates well with

4In some cases, however, cooperation between different parasite strains may increase the efficacy of

host exploration (Turner and Chao, 1999); such parasites are expected to evolve lower virulence (Brown

et al., 2002).
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other measures of virulence in this experimental system (Mackinnon and Read, 1999). In

another experimental system, virulence of parasites infecting fig wasps is determined by

how many different wasps (generally infected with distinct parasites) pollinate a given fig.

If a fig is pollinated by several wasps, parasites infecting such wasps are on average more

virulent than parasites infecting wasps that pollinate only unpollinated figs (Herre, 1993).

Higher virulence of such parasites is most likely due to an increased level of competition

with unrelated parasites within the same fig (Herre, 1993; Frank, 1996). Finally, the as-

sumption that multiple infections are more virulent was necessary to correctly predict the

epidemic of the Cucumber mosaic virus in the population of tomato plants (Escrui et al.,

2003).

On the other hand, some observations of malaria infection of humans or trypanosome

infection of bumblebees suggest that single infections may be as virulent as mixed infections

(Imhoof and Schmid-Hempel, 1998; Read et al., 2002).

Clearly how multiple infections occur and the type of infection is important in deter-

mining whether and how multiple infections will affect the parasite evolution. For example,

during an acute infection, the probability of superinfecting an already infected host is very

low because of the short duration of infection. Similarly, because of the short duration

of infection, mutations are not likely to generate high diversity in the parasite population

during the infection unless the mutation rate is extremely high. Therefore, the presence

of different parasite strains in the initial inoculum is the most likely mechanism by which

multiple infections may occur in acute infections. In contrast, during chronic infections all

the three mechanisms (co-, superinfection and mutation) may lead to increased parasite

diversity in infected hosts.

Importantly, for some medically important infections (such as Plasmodium falciparum

infection of humans), the role of multiple infections on the severity of the disease is not

well understood (Smith, 2002; Read et al., 2002). Despite this fact, there have been many

theoretical models assuming that multiple infections are the main force in driving the par-

asite evolution (see, for example, Gandon et al. (2001)). Clearly, more experiments with
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particular infections are needed to establish how multiple infections affect the within-host

dynamics of different parasite strains, severity of the infection and transmission success of

parasites.

1.3.2.5 Host heterogeneity

Many simple predictions of the adaptive theory are based on the assumption that parasites

evolve in populations of identical hosts. Clearly this is not the case for any natural

population where genotypic, phenotypic and age differences between different hosts exist.

Little work has been done to understand how parasites evolve in such heterogeneous host

populations.

Omitting many details of how heterogeneity can be generated and maintained (for a

review see (Ebert and Hamilton, 1996; Ebert, 1999; Galvani, 2003)), it is generally believed

that higher levels of host heterogeneity would select for less virulent parasites (Ebert, 1998,

1999). To reach this conclusion it is implicitly assumed that (1) parasites are not able to

adapt to different host types simultaneously5, and (2) adaptation to one host type such as

to increase replication/virulence is traded-off with replication in other host types. Some

experimental observations are consistent with the assumptions and the prediction (Ebert

and Hamilton, 1996; Ebert, 1998).

For example, spread of infections in host populations with low genetic diversity (such as

some human populations or agrocultures) often results in high host moralities (Black, 1992;

Ebert, 1999). Similarly, many parasites when serially passaged in new genetically identical

hosts (or in hosts with low genetic diversity), evolve to increase their virulence (Ebert,

1998). In accord with this increase, virulence generally decreases when it is measured in

the original host (Ebert, 1998).

Importantly, many of these and other observations can be explained without assuming

that host heterogeneity selects for parasites with low virulence. For example, high host

5By host types I mean different host strains for single-host parasites or different host strains/species

for multi-host parasites.
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mortalities during an epidemic are expected if there is a correlation between the rate of

parasite transmission and virulence (Section 1.3.2.3). An increase in virulence of serially

passaged parasites may be simply due to strong selection for more rapid growth and not

due to low genetic diversity of hosts (Ebert, 1998). The discrimination between the last

two explanations can be done in SPEs if hosts of different genetic backgrounds are being

used. If increase in virulence during SPEs is due to low host diversity, changing hosts at

random or at each passage should prevent parasites from adapting to one host type and

virulence from escalating. If the increase in virulence is due to relaxing the requirement

for transmission, virulence should increase despite the hosts being changed.

In one experiment, the latter prediction has been confirmed. Turner and Elena (2000)

passaged vesicular stomatitis virus, originally growing in BHK cells, in two novel host cell

types (HeLa and MDCK cells). There was an increase in the instantaneous growth rate

of the virus when measured in the new cell type and its simultaneous reduction when

measured in the original cell type or another cell type. However, when cell types used for

passage where changed (at random or after each passage), the evolved strain increased

its growth rate in both novel cell types but had a reduced growth rate in the original cell

type. In another experiment, a strain of P. chabaudi that had been passaged in C57Bl/6J

mice was more virulent in two unrelated mouse strains, CBA/Ca and DBA/2, than the

unpassaged parasite strain (Mackinnon et al., 2002).

Given these contradictory results, there is still no good understanding of how host

heterogeneity affects the optimal level of parasite virulence. As far as I know only one

theoretical study formally has addressed this question. Ganusov et al. (2002) assumed

that parasites causing acute infections in vertebrates evolve in the population of hosts

that stochastically differ in their susceptibility to infection or their quality of the immune

response. They found that in the absence of heterogeneity parasites evolve to an inter-

mediate growth rate but kill no host. The latter is due to the fact that there is a high

loss in total transmission when the parasite kills the host. When the level of host hetero-

geneity increases, the optimal level of parasite virulence measured as the case mortality
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increases as well. This is because in order to obtain the maximum total transmission, the

parasite has to compromise between killing “susceptible” hosts and obtaining high trans-

mission from “resistant” hosts (Ganusov et al., 2002). Thus, the analysis suggests that

higher levels of stochastic heterogeneity should select for higher optimal level of parasite

virulence.

In a recent study it has been proposed that virulence of Neisseria meningitidis, infecting

an immunologically diverse host population, may be the result of selection for parasites

with high mutation rates (Ancel Meyers et al., 2003). A high mutation rate increases

the changes of the parasite to infect heterogeneous hosts but simultaneously increases

the probability of killing an infected host by evolving highly virulent strains within the

host. If this explanation of N. meningitidis virulence is correct, it is expected that the

parasite, infecting a homogeneous host population, should evolve low mutation rate and

consequently low (theoretically zero) virulence.

In contrast, Regoes et al. (2000) have found that when two hosts types are present in

the population, parasites evolve lower virulence than when only one host type is present.

This is because the authors assumed an explicit trade-of between parasite virulence in two

host types. While parasites infecting only one host type may evolve infinite virulence,

this explicit trade-off does not allow virulence to escalate when two host types are present

(Regoes et al., 2000). This study, however, did not investigate how the degree of host

heterogeneity affects the optimal level of parasite virulence.

At this point we need more theoretical and experimental studies to answer the question

of how host heterogeneity affects the parasite evolution. The term heterogeneity may also

be interpreted differently whether one considers several strains of one host species or

different host species. This becomes particularly important since many parasites infect

more than one host species (Woolhouse et al., 2001). We expect however that the answer

may be different for different parasite-host associations.
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1.3.2.6 Route of transmission

Different parasites have different mechanisms of spreading from infected to susceptible

hosts including horizontal (direct, vector-borne, and fecal-oral) and vertical transmission

(Anderson and May, 1991; Mims et al., 2001). There has been a great debate pioneered

by Paul Ewald on whether the route of parasite transmission may be the most important

factor in determining virulence of parasites (Ewald, 1983, 1988, 1991, 1994). The main

theme of all these predictions is that increasing opportunities for transmission should select

for parasites with high virulence and similarly, reducing opportunities for transmission

should select for parasites with lower virulence.

For example, according to this hypothesis, since host mobility is not required and may

be deleterious for the transmission of vector-borne parasites, such parasites should on av-

erage be more virulent than parasites that are transmitted directly and that require host

mobility for transmission (Ewald, 1983). Similar arguments are applied to waterborne in-

fections causing diarrhoea because they can spread from immobilized hosts (Ewald, 1991).

Although comparative data on different parasites support this idea, other data, for ex-

ample, on transmission rates of malaria parasites of lizards that differ in their virulence,

do not (Schall, 2002). In addition, such comparative analysis across different parasite

species without consideration of other details of infection has other shortcomings (Ebert

and Bull, 2003). Theoretical analysis also suggests that whether vector-borne parasites

are more virulent than directly transmitted parasites depends critically on the morbidity

costs and the time schedule of the parasite transmission and needs not be true in general

(Day, 2001, 2002a). On the other hand, assuming a positive correlation between parasite

transmissibility and virulence for directly transmitted and waterborne parasites, Ewald

and De Leo (2002) have found that parasites that can be transmitted directly through

contact and indirectly through environment (such as waterborne parasites) evolve higher

virulence than parasites transmitted exclusively directly. In their model, the basic repro-

ductive number of the parasite is composed of two R0 that are related to each transmission

mode and are dependent on parasite virulence α:
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R0(α) = Rdir
0 (α) + Rindir

0 (α) =
β(α)N

α + d + ν
+

βw(α)ρ/mN

α + d + ν
, (1.5)

where βw is the infection rate of susceptible hosts by parasites in the environment, ρ is the

shedding rate of parasites into the environment by infected hosts, and m is the decay rate

of the parasite in the environment (i.e., 1/m is the parasite longevity in the environment),

and other parameters are the same as in eqn. (1.1).

The maximum of the total R0 can be achieved at virulence levels that are higher

or lower than the optimal virulence of parasites transmitted only directly (i.e., when

Rindir
0 = 0). The optimal level of virulence depends critically on the relative contribution

of two transmission routes and the trade-offs imposed for two routes. The authors assumed

a bell-shaped trade-off for the direct transmission (β = β1α/(c1 + α2)) and linear or satu-

rating trade-off for the indirect transmission (βw = β2α or βw = β2α/(cw +α)). The verbal

argument for choosing these functions is that in directly transmitted infections, higher vir-

ulence level while causing initial increase in the transmission rate, will eventually reduce

the transmission rate due to host immobilization. Since indirect (waterborne) transmis-

sion is not affected by the immobilization, there is no decrease in transmission rate with

increasing virulence (Ewald and De Leo, 2002). Unfortunately, to my knowledge there is

no experimental data that demonstrate such functional forms of the trade-offs for different

routes of transmission for cholera. Experimental tests would have to involve measurement

of costs of morbidity for direct transmission and virulence-transmission trade-offs for both

routes of transmission.

Nevertheless, at these “appropriately” chosen functions the authors indeed found that

parasites that are transmitted both directly and indirectly evolve higher virulence than

parasites transmitted exclusively directly. However, using similar trade-offs but changing

constants describing the trade-off for indirectly transmitted parasites, I find that optimal

virulence may be higher or lower than that for exclusively directly transmitted parasites,

depending on the parameter values (Figure 1.4). This example demonstrates the major

weakness of the “epidemiological” approach for understanding the evolution of parasites: in
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many cases not only the particular biological details of the modeled system are important,

but the conclusions can be affected by the exact shape of trade-offs used in the analysis.

Other studies nevertheless suggest that if parasites evolve in a spatially structured host

population then an increase in opportunities for infection of hosts distant to the infected

host will lead to selection of parasites with higher virulence (Boots and Sasaki, 1999; van

Baalen, 2002). This is because when only local transmission is allowed, parasites cannot

afford to be too virulent because they could deplete all local hosts before being transmitted

to the next host patch. When global transmission is allowed, this requirement is relaxed.

As yet, no experimental tests have been done to test these predictions. Theoretically, such

tests would involve evolution of parasites, for example, by passaging, in environments with

different spatial structures such as test-tubes (global transmission) and petri-dishes (local

transmission).

There has been a similar discussion on the relationship between the longevity of para-

sites in the environment and their optimal virulence level. Ewald has suggested that high

longevity of parasites in the environment should select for high virulence, because longer

survival in the environment relaxes the parasite need for host and for transmission (Ewald,

1994). Several theoretical studies have attempted to address this question but reached dif-

ferent conclusions. Bonhoeffer et al. (1996) have found that parasite longevity does not

affect the optimal level of parasite virulence for endemic infections transmitted exclusively

indirectly. Since there is no trade-off between the parasite longevity in the environment

and its virulence, parasite longevity affects only the R0 of the infection but not optimal

virulence (Bonhoeffer et al., 1996). Gandon (1998) has found that if multiple infections are

allowed, higher parasite longevity will select for higher virulence because of the increased

within-host competition between unrelated parasite strains. Finally, Day (2002) has found

that in cases when there are both direct host-to-host parasite transmission and indirect

infection of hosts by parasites in the environment, better parasite survival correlates with

higher optimal virulence. The last prediction, however, similar to the case with direct and

indirect transmission routes, depends heavily on the appropriately chosen trade-offs and
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Figure 1.4: The basic reproductive number of an infection transmitted directly and indi-

rectly as the function of virulence α. The correlation between the transmission rate and

virulence is assumed to be of the form β = β0α/(α2 + c) and βw = β0α/(α + cw), for

direct and indirect transmission, respectively. The optimum level of virulence for para-

sites transmitted only directly α∗direct ≈ 0.18. The basic reproductive number is calculated

in accord with eqn. (1.5). Left panel shows changes in the optimal level of virulence

if the trade-off for indirect transmission is changed: cw = 1 (α∗ ≈ 0.11) and cw = 10

(α∗ ≈ 0.23). Note that depending on the value, parasites transmitted directly and indi-

rectly may evolve higher or lower virulence than parasites transmitted only directly. Right

panel shows changes in the optimal level of virulence when the parasite longevity in the

environment is changed: m = 0.1 (α∗ ≈ 0.11) and m = 10 (α∗ ≈ 0.17). Note that in this

case, long-lived parasites evolve lower virulence (but the opposite is also possible). If the

parasite is transmitted only indirectly, parasite longevity does not affect the optimal level

of parasite virulence. Other parameters are: β0 = 0.01, d = 0.001, c = cw = 1, ν = 0.01,

N = 5 102, ρ = 1, and m = 0.05.
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needs not be generally true (Figure 1.4). In summary, these results suggest that it is very

difficult to make any general predictions on whether there is any relationship between the

route of transmission and optimal virulence unless specific details of the infection (such as

trade-offs) are known.

In contrast with parasites, transmitted horizontally, it has been argued that vertically

transmitted parasites should be less virulent because in this case transmission of the

parasite is linked to the survival of the host (Ewald, 1987). There are several experimental

observations that are consistent with this prediction. Bull and coworkers in a series of

elegant experiments have shown that increasing opportunities for horizontal transmission

of a bacteriophage lead to selection of more virulent viral stains (Bull et al., 1991; Bull

and Molineux, 1992; Messenger et al., 1999). Similar results have been obtained for a

plasmid evolving in bacteria (Turner et al., 1998). In another experiment, lymphocytic

choriomeningitus virus has evolved in a mouse stock from a relatively virulent horizontally

transmitted infection to asymptomatic vertically transmitted disease (Traub, 1939). In

an exceptional study by Jeon (1972), an initially virulent bacterial parasite of amoebas

became harmless after 5 years of strictly vertical transmission. Importantly, both changes

in the parasite and the host were responsible for the reduction in virulence (Jeon, 1972).

Finally, a comparative study suggests that vertically transmitted lice are less virulent than

horizontally transmitted mites while infecting the same host species, rock doves Columba

livia (Clayton and Tompkins, 1994).

However, there are examples of apparently only vertically transmitted parasites that

yet are very virulent. A microsporidian parasite Tuzetia sp. of Daphnia magna is a strictly

vertically transmitted parasite (at least in the laboratory) but yet it dramatically reduces

fitness of infected hosts since infected hosts are outcompeted by uninfected hosts (Mangin

et al., 1995). Indeed, if some degree of harm is required for transmission, we expect that

even vertically transmitted parasites may be virulent. A fundamental vertical transmission

equation suggests that virulent parasites of hosts reproducing sexually, may be maintained

in the population while being transmitted exclusively vertically. For that the efficacy of
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vertical transmission from both parents must outweight the reduction in host fecundity and

survival (Fine, 1975). Another study suggests that while exclusively vertically transmitted

parasites should evolve low virulence, even small rates of horizontal transmission may be

sufficient for maintenance of highly virulent parasites that are transmitted vertically with

high efficiency (Mangin et al., 1995; Lipsitch et al., 1996). Thus the amount of vertical

transmission may indicate of how virulent a parasite is but it needs not be the general

rule.

1.3.2.7 Other factors

There are other factors that may affect the evolution of parasites and which have not been

explicitly discussed here. For example, while simple theory assumes that parasites evolve

much faster than their hosts, this may not be entirely correct since many hosts species

may increase the rate of their evolution by reproducing sexually (Felsenstein, 1988; Ebert

and Hamilton, 1996; Ebert, 1999). Clearly in the presence of parasites, hosts will evolve to

become more resistant to the infection and this in turn may affect parasite virulence. One

good example comes from the coevolution of the myxoma virus and rabbits in Australia,

where as hosts evolved high levels of resistance, the virus evolved higher virulence (Fenner

and Fantini, 1999, Figure 1.1). There have been a number of theoretical frameworks

attempting to describe how host evolution may occur and what consequences it will have

for the parasite evolution (Bowers, 1999, 2001; Gilchrist and Sasaki, 2002; Boots and

Bowers, 2003).

Simple theory also assumes that any infected host may in fact infect any susceptible

host in the population. While this might be correct for some situations and infections,

in general, spatial distribution of hosts may be a critical factor affecting the spread of

the infection and consequently the evolution of parasites. Importantly, may predictions of

the simple theory cannot be easily extended when there is a spatial heterogeneity in host

prevalence. For example, the concept of the basic reproductive number does not work in

this case (Haraguchi and Sasaki, 2000; Rauch et al., 2003). Furthermore, parasites may
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evolve to high or low virulence depending on particular properties of transmission and

host connectivity (Boots and Sasaki, 1999; van Baalen, 2002; Read and Keeling, 2003).

Problems with the adaptive theory of parasite evolution

The predictions of the adaptive theory can be only applied to infections for which the

trade-offs between parasite characteristics are known to exist. There is no a priory knowl-

edge that such trade-offs exist for any parasite-host association. Furthermore, changes in

parasite virulence need not be always adaptive to the parasite (Bull, 1994; Levin and Bull,

1994), the fact ignored in many interpretations of experimental results.

In previous sections I have reviewed factors that may influence the evolution of parasites

even if we assume that there are trade-offs between parasite characteristics. Importantly,

the presence of the trade-offs does not determine the exact level of parasite virulence that

depends on the precise functions describing the trade-offs (see, for example, Figure 1.4).

In particular, if only the correlation between transmissibility and virulence is known but

the trade-off between the host recovery rate and virulence is not, then predictions on

how parasites will evolve may be incorrect (Day, 2002b). This can be exemplified by the

prediction of the optimal level of the myxoma virus during its evolution in Australia. Based

only on the trade-off between the host recovery rate and virus-induced host mortality rate,

Anderson and May calculated the optimal level of virus virulence α∗theory ≈ 0.013 day−1

that was 3 times lower than the observed value α∗observ ≈ 0.041 day−1 (Fenner and Ratcliffe,

1965; Anderson and May, 1982). By adding a trade-off between the rate of transmission

and virulence for fleas or mosquitoes, the optimal virulence level became closer to the

observed, α∗ ≈ 0.040 day−1, as shown in Figure 1.2 (Massad, 1987; Dwyer et al., 1990).

Given this uncertainty, it seems that it is very difficult to make any strong predictions on

the parasite evolution unless details of the specific host-parasite association are taken into

account.

A similar result has been obtained by Ganusov and Antia (2003). The authors found

that changes in the rate of parasite transmission or the mechanism of the parasite-induced
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pathogenesis dramatically alter the optimal level of parasite virulence. Since their ap-

proach is based on the assumption that there are trade-offs between parasite transmis-

sibility, host recovery rate and virulence, even though they are given implicitly by the

dynamics of the parasite and the immune response (Ganusov et al., 2002), this result

emphasizes the role of particular details in predicting parasite evolution.

Another limitation of many mathematical models based on the adaptive theory is that

the definition of virulence used may not be widely applied to natural infections (Ebert

and Bull, 2003). Virulence is often thought as the property of the parasite but host may

play a major role in pathogenesis as well. For example, in infections with noncytopathic

viruses pathology may arise because of the immune response destroying virus-infected cells

(Wodarz and Krakauer, 2000). For some infections, it is not known whether variation in

the disease severity is due to infection with different parasite strains or because of the host

variability. The adaptive theory, by focusing only on virulence, ignores the evolution of

other parasitic traits such as production of toxins or host castration. Finally, the adaptive

theory still does not explain why some parasites are quite avirulent. Can it be that such

parasites have evolved to cause little harm in the presence of trade-offs between β, ν and

α?

In summary, the adaptive theory of parasite evolution has proven to be a valuable

tool in analyzing the evolution of parasites. Yet many limitation of the theory are clear

and virulence of many infections is not explained in terms of this theory. Since the field

of the evolution of infectious diseases is growing rapidly, future experimental tests will,

hopefully, attempt to verify the assumptions behind the adaptive theory as well as test its

theoretical predictions for specific infections.
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1.3.3 Non-adaptive hypotheses for the maintenance of parasite

virulence

While the hypothesis that virulence can be adaptive is very attractive, it is clear that in

many cases parasite virulence is not related to parasite’s fitness (transmission) and there-

fore should be considered as non-adaptive. In some cases, this is because such parasites

infect hosts that are not normally transmit the parasite to other hosts (Mims et al., 2001).

Such accidental infections or “spill-overs” may sometimes be very lethal to the host al-

though many harmless infections most likely occur unnoticed (Ebert, 1998). Infections

of this type include soil bacteria Clostridium tetani causing tetanus, and Clostridium bo-

tulinum causing botulism. Both parasites cause disease in humans by accident, and toxin

production by these bacteria most likely has evolved due to other reasons than to kill

humans (Lipsitch and Moxon, 1997). Similarly, hantaviruses, Nipah virus, and rabies may

cause serious diseases but yet for neither of the infections there is detectable human to

human transmission of the parasite (Chua et al., 2000; Kruger et al., 2001; Mims et al.,

2001; Lednicky, 2003). It is possible, however, that such spill-overs may with time evolve

to begin spreading from human to human without the requirement for the original hosts.

In that case, virulence of such an infection may evolve but how it will evolve would depend

on many biological details of the within-host dynamics and epidemiological spread of the

parasite.

However, there are some infections, such as Neisseria meningitidis and poliovirus, that

generally infect many hosts but cause severe disease only in rare occasions (Weiss, 2002).

Levin and Bull (1994) have suggested that virulence of such infections may be a result of the

short-sighted, within-host parasite evolution. Since natural selection on parasite strains

acts not only between infected hosts, but also within the infected host, there might be cases

when within-host competition results in emergence of a parasite strain that outcompetes all

other strains but leads to the host’s death. For example, poliovirus is transmitted through

the oral-fecal route and generally does not induce disease. Sometimes, however, it can be
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passed into the blood and then into the central nervous system (CNS) where it can cause

poliomyelitis. Since there is no apparent transmission of the virus from CNS, the authors

argued that virulence of poliovirus results from the its within-host evolution (Levin and

Bull, 1994). Similar arguments are applied to N. meningitidis causing meningitis and HIV

causing AIDS.

Since the exact mechanisms by which these parasites cause the disease are not yet

understood, such interpretation of parasite virulence has been questioned (Frank, 1996;

Ebert, 1999). For example, Ebert (1999) argues that within-host evolution of highly

virulent parasite strains may be the direct cost of having high mutation rate required

for evasion of the immune response. Indeed, HIV persists for long periods of time in a

given host and during that time it is faced with a constant pressure from the immune

system. High mutation rate might be one way of avoiding the recognition by the immune

response (Ploegh, 1998). On the other hand, a high mutation rate may have a cost of

generating mutants that are able to end the infection by killing the host (Nowak et al.,

1991). Similar arguments could be applied to N. meningitidis causing a long infection and

capable of evolving at a high rate due to phase-shifting (Taha et al., 2002). This alternative

explanation generates several specific predictions that could be tested experimentally. An

increase in the mutation rate of such parasites should lead, on the one hand, to an increased

probability of disease occurrence, and on the other hand, to an increased total transmission

from hosts that have not developed the disease. Similarly, decrease of the mutation rate

should reduce the total transmission of parasites.

Along the same lines, an alternative explanation for the N. meningitidis virulence has

been suggested in a recent study by Ancel Mayers et al. (2003). The authors presented

a mathematical model where high phase-shifting of the bacteria leads simultaneously to a

more rapid epidemiological spread of the infection and a higher probability of causing the

disease. In this model, the high mutation rate is advantageous for the parasite because

it allows the parasite to adapt faster to a heterogeneous host population to establish

the initial asymptomatic infection (Ancel Meyers et al., 2003). In summary, regardless
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of forces driving evolution of such parasites, within-host evolution may be an important

factor affecting virulence of parasites which, when looked from a between-host viewpoint,

may appear to be non-adaptive.

1.4 Conclusion

In this paper I have reviewed three hypotheses suggested to explain the variation in vir-

ulence level between different parasites. In the past 10 years using mathematical models

based mainly on the adaptive theory of parasite evolution, many specific predictions of

how parasites should evolve in different conditions have been generated. Some of these

predictions have been tested and more are hopefully underway. Although currently this

research is addressing mostly an academic question, I am optimistic that in the future as

more experimental data become available, it may be possible to generate public health

recommendations to help “manage” parasite virulence.

1.5 Appendix

Optimal virulence level of epidemic and endemic infections

Using a model for the epidemiological spread of directly-transmitted diseases where only

single infections may occur, during an endemic parasites evolve to maximize their basic

reproductive number, R0 (Bremermann and Thieme, 1989). At the same assumptions,

during an epidemic parasites should evolve to maximize the net rate of the growth in the

number of infected hosts, r. Using the definitions for R0 and r given in eqns. (1.1)–(1.2)

we obtain the following relationship between two fitness measures:

R0(α) =
r(α)

α + d + ν(α)
+ 1, (1.6)

where I assumed that both R0 and r depend on virulence measured by parasite-induced

host mortality rate α.
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I further assume that the trade-offs between transmissibility, recovery rate and vir-

ulence are such that the both fitness measures are maximized at intermediate levels of

virulence defined in equations:

dR0(α)

dα

∣∣∣∣∣
α=α∗

endem

= 0, (1.7)

dr(α)

dα

∣∣∣∣∣
α=α∗

epidem

= 0. (1.8)

Using eqns. (1.6) and (1.7), we obtain

dr(α)

dα

∣∣∣∣∣
α=α∗

endem

= r(α)

(
1 + dν/dα

α + d + ν

)∣∣∣∣∣
α=α∗

endem

. (1.9)

It is then easy to see that if (1+dν/dα)|α=α∗
endem

> 0 then dr/dα|α=α∗
endem

> 0. Because

dr/dα|α=α∗
epidem

= 0, and d2r/dα2|α=α∗
epidem

< 0 (maximum), α∗epidem > α∗endem. Thus if the

host recovery rate changes slowly with virulence (i.e., |dν/dα| � 1), the optimal virulence

level of epidemic infections is always greater than that of endemic infections for any trade-

off β = β(α).

1.6 Publication status

Ganusov, V.V. (2003) Evolution of microparasites and maintenance of parasite virulence:

a review. To be submitted for publication (Evolution)
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Chapter 2

Within host population dynamics

and the evolution of microparasites

in a heterogeneous host population

Abstract

Why do parasites harm their hosts? The general understanding is that if the

transmission rate and virulence of a parasite are linked, then the parasite must harm

its host in order to maximize its transmission. The exact nature of such trade-offs

remains largely unclear, but for vertebrate hosts it probably involves interactions

between a microparasite and the host immune system. Previous results have sug-

gested that in a homogeneous host population in the absence of super- or coinfection,

within host dynamics lead to selection of the parasite with an intermediate growth

rate which is just being controlled by the immune system before it kills the host

(Antia et al., 1994). In this paper, we examine how this result changes when hetero-

geneity is introduced to the host population. We incorporate the simplest form of

heterogeneity — random heterogeneity in the parameters describing the size of the

initial parasite inoculum, the immune response of the host and the lethal density at

which the parasite kills the host. We find that the general conclusion of the previous

model holds: parasites evolve some intermediate growth rate. However, in contrast
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with the generally accepted view, we find that virulence (measured by the case mor-

tality or the rate of parasite-induced host mortality) increases with heterogeneity.

Finally, we link the within-host and between-host dynamics of parasites: we show

how the parameters for epidemiological spread of the disease can be estimated from

the within-host dynamics, and in doing so examine the way in which trade-offs be-

tween these epidemiological parameters arise as a consequence of the interaction of

the parasite and the immune response of the host.

2.1 Introduction

Microparasites depend critically on their hosts to ensure both their livelihood and trans-

mission, yet many are virulent: they cause harm to their hosts. Why do they do this?

In some cases virulence is not selected but is simply coincidental; for example, virulence

observed in polio may arise due to “short-sighted” evolution of the virus resulting in the in-

fection of neurons even though this does not increase transmission (Levin and Bull, 1994).

In other cases transmission and thus reproductive success of the parasite may be linked to

the harm that it causes to its host; for example, the transmission rate of the myxoma virus

may be positively correlated with its density within the host and the associated forma-

tion of lesions (Fenner and Ratcliffe, 1965). While the empirical evidence in favor of this

hypothesis remains limited, linkages or correlations of this sort (frequently referred to as

trade-offs) have been proposed in a number of experimental systems (Fenner and Ratcliffe,

1965; Schulman, 1970; Anderson and May, 1982; Bull and Molineux, 1992; Ewald, 1993;

Ebert, 1994; Ebert and Mangin, 1997; Ebert and Hamilton, 1996; Frank, 1996; Messenger

et al., 1999; Mackinnon and Read, 1999). Unfortunately, the precise shape of such trade-

offs have rarely been determined (Anderson and May, 1982; Ebert and Hamilton, 1996),

and the underlying causes of trade-offs between transmission and virulence are not well

understood for the majority of host-parasite systems.

Broadly speaking, theoretical models of virulence evolution have typically employed

several different conceptual approaches (for a comprehensive review see Frank (1996))
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two of which we would like to emphasize in particular. The first approach is essentially

epidemiological (Anderson and May, 1991). In this approach parasites evolve to maximize

the net reproductive rate R0, the average number of new infections arising from a single

infected host introduced into a wholly susceptible population (May and Anderson, 1983):

R0 =
βN

α + b + ν
, (2.1)

where β is the transmissibility, α, b and ν are the rate constants for the parasite-induced

and natural host mortality and recovery, respectively, and N is the density of susceptible

hosts. In the absence of superinfection, selection in the parasite population will act to

maximize R0 (May and Anderson, 1983; Bremermann and Thieme, 1989). If α, β, and ν

are not associated, this will lead to selection for highly transmissible (β → ∞), avirulent

(α → 0) parasites. Virulent parasites can evolve if there are trade-offs between α and β or

ν, with evolved virulence levels determined by the shape of the trade-off (Anderson and

May, 1982; May and Anderson, 1983). Numerous extensions of the basic SIR (Susceptible-

Infectious-Recovered, (Bailey, 1975)) approach have explored the way in which virulence

evolution is affected by factors such as mutation (Bonhoeffer and Nowak, 1994b; Bergstrom

et al., 1999), co- or superinfection (Levin and Pimentel, 1981; Frank, 1992; Nowak and

May, 1994; May and Nowak, 1995; Mosquera and Adler, 1998), the mode of transmission

(Lipsitch et al., 1995b,a; Bergstrom et al., 1999), host susceptibility (Antonovics and

Thrall, 1994; Frank, 1993; van Baalen, 1998; Gandon and Michalakis, 2000), and host

heterogeneity (Regoes et al., 2000).

The second approach focuses on the within-host dynamics of the parasite. These models

typically track the parasite population within individual hosts and determine how factors

which influence this within-host dynamics of the parasite will affect both virulence of the

parasite and its transmission. The immunological defenses of vertebrates have evolved

to combat parasites and may be expected to be one of the most important factors in

determining the within-host dynamics of the parasites. Several models have explicitly

considered how the interaction between the parasite and the immune response affects
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the within-host dynamics and the consequences for the evolution of virulence of parasites

(Antia et al., 1994; Bonhoeffer and Nowak, 1994a; Antia and Lipsitch, 1997).

The epidemiological and within-host approaches each have their advantages and short-

comings. The major advantage of the epidemiological approach lies in its generality:

painting nature with a broad brush, these models are typically not restricted to single

particular infections. This approach has been used in a number of ways. First, this

approach can help determine the nature of the trade-offs between α, β and ν from the

epidemiology of spread of specific infections such as the myxoma virus (Anderson and

May, 1982). Second, one can assume the existence of various trade-offs between virulence

and transmissibility, and then explore the population-level consequences of these trade-offs

(Anderson and May, 1982; May and Anderson, 1983). Herein lies a major shortcoming of

these models, however: since they assume a priori that trade-offs exist, they cannot be

used to investigate the source and nature of these trade-offs, nor to derive the existence

of these trade-offs from basic biological principles. Third, the epidemiological approach

can be used to explore how factors such as intra-host competition between parasite strains

alter the evolved level of parasite virulence (Levin and Pimentel, 1981; Bonhoeffer and

Nowak, 1994b; Nowak and May, 1994; May and Nowak, 1995; van Baalen and Sabelis,

1995; Frank, 1996; Mosquera and Adler, 1998; Gandon et al., 2001a).

Within-host models typically make much stronger assumptions about the details of

infection and host response, and as such are necessarily more narrow in applicability.

However, in contrast to many epidemiological models, the trade-offs between transmissi-

bility and virulence naturally emerge from the within-host dynamics of the parasite and

immune system (Antia et al., 1994). As we show in this paper, these emergent trade-offs

can then, in turn, be used to understand the epidemiological properties of the parasite.

Introducing heterogeneity. The evolution of virulence is, at its core, a co-evolutionary

process between parasite and host. As such, we might expect that a proper understanding

of this process will require consideration of heterogeneity in both the parasite and host

populations. Most previous studies have focused on how heterogeneous parasites will
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evolve in a population of homogeneous hosts (see e.g. Nowak and May, 1994). More

complex extensions of these models also incorporate host heterogeneity with differences in

host susceptibility, host recovery rates, and the ability to transmit the parasite. (These and

other forms of host heterogeneity have been observed in a number of host-parasite systems;

see e.g. (Fenner and Ratcliffe, 1965; Anderson and May, 1982; May and Anderson, 1983;

Ebert and Herre, 1996; Zhong and Dobson, 1996; Woolhouse et al., 1997)). However, these

models have largely been aimed at explaining the observed stable polymorphism in host

susceptibility and parasite virulence found for many parasite-host systems (Antonovics and

Thrall, 1994; Frank, 1993; Gupta and Hill, 1995; Morand et al., 1996). The question of how

host heterogeneity affects the evolution of parasite virulence has, until recently, been less

thoroughly explored. In a comprehensive review, Ebert and Hamilton (1996) suggested

that parasites evolving in heterogeneous populations should evolve to be less virulent than

parasites adapting to one host type; a parasite which is specialized to exploit one host

type will do poorly at exploiting other hosts. Therefore, if more than one different host

population is infected by a particular parasite strain, virulence cannot increase in all of

the infected populations simultaneously. Regoes et al. (2000) derived a similar conclusion

from a theoretical model of parasite evolution in heterogeneous populations, and further

explored how — depending on the trade-off between virulence of the parasite in two host

types — parasites may evolve to be generalists, infecting hosts of both types equally well,

or specialists, infecting one host type to the exclusion of the other.

The addition of heterogeneity to the within-host models of acute infections is particu-

larly important because the simple model predicts that in order to maximize transmission,

the growth rate of the parasite will evolve to be sufficiently high that maximum parasite

density falls just short of the lethal density (the density of the parasite at which it kills

the host) before it is cleared by the immune response (Antia et al., 1994). In this case

the evolved parasite does not kill its host. Because the optimum is at this knife edge, the

introduction of even a little random or stochastic heterogeneity in the parameters could

substantially change the level of parasite virulence. Indeed, Antia and Lipsitch (1997)
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show that stochastic heterogeneity in the host population results in a decrease in both

the optimal growth rate of the parasite and the total transmission. However, they did not

consider the consequences of host heterogeneity on the evolution of parasite virulence.

In this paper we introduce a simple type of heterogeneity — random heterogeneity

in the parameters describing the host response — and explore how it affects parasite

evolution. We expect random heterogeneity to be a virtually ubiquitous aspect of the

host-parasite interactions. For example, there may be stochastic variation in the initial

parasite inoculum, and hosts may, as a result of being exposed to different antigenic and

nutritional environments, have small differences in their specific immune responses fol-

lowing infection (Traub, 1936; Fenner and Ratcliffe, 1965; Schulman, 1970; Zhong and

Dobson, 1996; Woolhouse et al., 1997). In this paper, we do not consider the sort of large-

scale host heterogeneity which results in specialist/generalist trade-offs such that parasite

adaptations favored in one host type necessarily engender fitness costs in the other host

type(s). We show that, as expected, the introduction of heterogeneity in the host popula-

tion prevents parasite adaptation to a particular host type and this results in a decrease

in the average transmission of the parasite from an infected host. We find, however, that

while an increase in heterogeneity initially leads to a decrease in the optimal growth rate

of the parasite, this decline is not monotonic — at very high levels of heterogeneity the

optimal growth rate begins to increase. The most interesting and surprising results con-

cern the evolution of virulence in heterogeneous populations. We find that contrary to

conventional expectations (Ebert and Herre, 1996; Ebert, 1998; Regoes et al., 2000), in

our model changes in virulence depend critically on how virulence is measured; virulence

measured by the case mortality increases rather than decreases as heterogeneity is in-

creased. Finally we show how the parameters for epidemiological spread of the disease

can be estimated from the within-host dynamics of parasites, and in doing so we examine

the trade-offs between the epidemiological parameters α, β and ν that result from the

within-host model.
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2.2 Results and Discussion

2.2.1 Formulation of the mathematical model

We employ a model — introduced by Antia et al. (1994) — that is designed to describe

acute infections in vertebrate hosts with rapidly growing microparasites. In this model, the

cycle of infection, transmission, and clearance proceeds as follows: (i) Infection is initiated

in a new host by a fixed inoculum, P0, and the parasite population grows exponentially

in the absence of a specific immune response. (ii) The presence of the parasite induces

a specific immune response in the host which grows by clonal expansion in a parasite-

dependent manner, and kills the parasite at a rate proportional to the product of the

parasite and immune cells densities. (iii) There is a lethal or ”threshold” density of

parasite, D, at which infection kills the host. (iv) The rate of transmission of the parasite

from an infected host is proportional to the parasite density within the host, and we

assume that the parasite is selected to maximize its total transmission from an infected

host during the course of the acute infection. Given these assumptions, the rates of

change in the densities of the parasite (P ) and specific immune cells (X) will be given by

the following equations:

dP

dt
= rP − hPX,

dX

dt
=

sXP

k + P
, (2.2)

where r and s are the maximum growth rates of the parasite and immune cells, respectively,

h is the rate constant for clearance of the parasite by the immune response, and k is the

parasite density which stimulates immune cells to grow at half their maximum rate. Since

we are primarily concerned with the dynamics of parasites during acute infections, we

ignore the contraction and memory phases of the immune response which occur following

control and clearance of the parasite. Biologically the relative magnitudes of various

parameters are (Antia et al., 1994):



48

P0 � k � D, hX0 � r, s, (2.3)

where X0 = X(0) is the precursor frequency (the initial number of immune cells specific

to the parasite). The within-host dynamics of the parasites with different growth rates

are illustrated in Figure 2.1A. We see that: (i) slowly growing parasites are cleared by the

immune response before they reach a high density; (ii) parasites with intermediate growth

rates reach higher densities but are cleared by the immune response, provided the lethal

density D is not exceeded; and (iii) parasites with the highest growth rates reach the lethal

density rapidly and kill the host before being controlled by the immune response.

If the rate of parasite transmission is proportional to the within-host density of the

parasite, then a plot of the total transmission as a function of the growth rate r of the

parasite shows that maximum total transmission occurs at an intermediate growth rate

r∗ (Figure 2.1B). The total transmission increases with increasing growth rate, provided

that the lethal density is not exceeded (i.e. when r ≤ r∗). At the point where the lethal

density is just exceeded, transmission suddenly drops, as there is no transmission from

the dead host (we call this drop in transmission “the cost of killing the host”). A further

increase in the growth rate leads to a gradual decline in the total transmission. We can

estimate the optimal growth rate r∗ (at which the total transmission is maximum), and

how the total transmission l(r) changes with the growth rate by the following expressions,

derived in the Appendix:

(
D

k

)s

≈
(

r∗

heX0

)r∗

, (2.4)

and

l(r) = c
∫ ∞

0
P (t)dt ≈ c ·


k
s

(
s

hX0

)r/s
Γ(r/s), if r ≤ r∗

D/r, if r > r∗
. (2.5)

where e is the base of the natural logarithm. What consequences does this have for the

evolution of virulence? The answer depends on how virulence is defined. We consider
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Figure 2.1: The evolution of microparasites in the absence of host heterogeneity. Panel

(A) shows the within host dynamics of parasites with different growth rates r. Slowly

growing parasites (r = 1.20) are cleared by the immune system before they reach a high

density, rapidly growing parasites (r = 6.0) kill the host before the immune response is

activated, and parasites with intermediate growth rates (r = 2.08) just approach lethal

density D before clearance by the immune system. Panel (B) shows the total transmission

of a parasite over the duration of infection as a function of its growth rate r. The maximum

total transmission corresponds to the growth rate at which the parasite is just controlled

by the immune system before it reaches D. A numerical solution of equations (2.2) (· · ·)

and analytical approximation given by the equation (2.5) (—) are shown. Parameters:

P0 = 1, X0 = 1, h = 10−3, k = 103, D = 109, s = 1.
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two commonly used measures for virulence, the LD50 and the case mortality1. If we use

the LD50 as the measure of virulence we find that the model predicts (i) the LD50 varies

inversely with the growth rate r, and (ii) selection for an intermediate growth rate implies

selection for intermediate levels of virulence (see Antia et al., 1994). If instead we measure

virulence by the case mortality, the model predicts that virulence of a fully evolved parasite

(with r = r∗) is zero because the maximum parasite density will always fall just short of

the lethal density. Because maximum transmission occurs when the maximum parasite

density falls infinitesimally short of the lethal density the level of virulence may change

dramatically if any heterogeneity is introduced. How it will change is addressed in the

next section.

2.2.2 Evolution in a heterogeneous environment

In the simplest model we assumed that, except for the parasite growth rate r, all the

parameters describing the parasite-host interaction are fixed. In this section we introduce

“random” heterogeneity of the parameters describing the host response, and ask how the

optimal growth rate, total transmission, and virulence level of the parasite change with the

amount of heterogeneity present in the host population. Heterogeneity in host response to

parasite pressure may take a number of (not mutually exclusive) forms. For example, hosts

may vary in immune-cell activation rates (different k), frequencies of precursor immune

cells (different X0), immune-cell specificity to the parasite (h), and threshold densities

at which parasite load becomes lethal (D). For simplicity, we will begin the analysis by

introducing heterogeneity in only one parameter, the threshold density D at which the

parasite kills the host. We do so by generating a distribution of threshold densities for a

particular host population described by the probability density function f(D) such that

f(D) dD is the probability that a given host has lethal density in a range (D, D + dD).

1The LD50 or Lethal Dose 50 is the initial dose of the parasite required to kill 50% of infected hosts

in a fixed period of time (Davis et al., 1969). The case mortality is the probability of host death due to

the infection.
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We consider two simple distributions of the probability density function f : uniform and

gamma distributions. We characterize the degree of host heterogeneity by the coefficient

of variation CV =
√

σ2/〈D〉, where 〈D〉 is the mean and σ2 is the variance of the threshold

density. As in the simple model, we assume that different parasite strains differ only in

their growth rates r and that r evolves so as to maximize the total transmission over the

course of an infection. The average (expected) total transmission of a parasite with growth

rate r in this heterogeneous host population is given by the integral of the product of the

probability density function f(D) and the instantaneous transmission rate l(r, D) over the

course of the infection:

L(r) =
∫ ∞

0
l(r, D)f(D)dD. (2.6)

Substituting l(r, D) from the equation (2.5) we find2:

L(r) ≈ kc

s

(
s

hX0

)r/s

Γ(r/s)
∫ ∞

k

(
r

heX0

)r/s f(D)dD +

c

r

∫ k

(
r

heX0

)r/s

0
Df(D)dD. (2.7)

In the subsequent sections we explore in detail the consequences of heterogeneity in

the parameter D. The discussion of how heterogeneity in other parameters affects the

evolution of microparasites is relegated to the end of this section.

2.2.2.1 Transmission and the optimal growth rate

The first two panels of Figure 2.2 provide an overview of the consequences of introducing

heterogeneity in the lethal density D. The total transmission changes as a function of

growth rate for different levels of uniformly distributed (Panel A) or gamma distributed

(Panel B) heterogeneity. Both the total transmission and the growth rate at which trans-

mission is maximized change with increasing heterogeneity. For both uniform and gamma

2This approximation has been used to generate the curves in Figures 2.2 & 2.4.
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distributions: (i) the total transmission decreases monotonically with increasing hetero-

geneity and (ii) the optimal growth rate ropt appears to first decrease and then increase as

heterogeneity increases. These results are shown in more detail in the second two panels

of Figure 2.2. The decrease in the total transmission with increasing heterogeneity is, in

retrospect, unsurprising: as heterogeneity increases, the parasite is not able to optimize

as well as when there is a single host type. The change in the parasite’s optimal growth

rate from the value r∗ which the parasite has in the absence of heterogeneity to ropt which

it has in the presence of heterogeneity is somewhat less intuitive. This change is a con-

sequence of the asymmetry of the total transmission around the optimum r∗ observed in

Figure 2.1B. At small departures from the growth rate r∗ higher transmission is obtained

by slightly under-cutting the growth rate r∗ (ropt < r∗) than by exceeding it. At higher

departures from the optimum, higher transmission can obtained by exceeding the growth

rate r∗ than by under-cutting it. Thus when heterogeneity is low it is on average better

to have a slightly lower than the growth rate r∗; when heterogeneity is high it is better to

have a higher growth rate.

2.2.2.2 Evolution of virulence

We now examine the effects of host heterogeneity on virulence evolution. We measure

virulence in two different ways, as (i) the case mortality, M , and (ii) the LD50. Panel

E of Figure 2.2 shows how the case mortality changes with increasing levels of host het-

erogeneity. For both uniform and gamma distributions of threshold density values, the

case mortality increases from zero as heterogeneity increases. When threshold density D

is uniformly distributed, there is an initial period when the heterogeneity is low during

which there is no increase in the case mortality. When threshold densities are given by a

gamma distribution, the case mortality increases almost linearly with increasing hetero-

geneity. The increase in case mortality is determined by two factors. The optimal growth

rate ropt decreases, reducing the maximum density of the parasite within the host. How-

ever, heterogeneity in the lethal density D results in some fraction of the host population
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Figure 2.2: The evolution of microparasites in a heterogeneous host population. We

examine the effects of adding heterogeneity in the lethal density D on the evolution of

parasites. Panels (A) and (B) show the changes in the total transmission of parasites

with different growth rates r when host heterogeneity in the lethal density D is modelled

by uniform or gamma distributions, respectively, in the absence (—) and presence (- -

-) of heterogeneity (CV is marked). Panels (C) through (F) show the consequences of

heterogeneity in the lethal density D for the total transmission (Panel C), the optimal

growth rate (Panel D), case mortality (Panel E) and LD50 (Panel F) (host heterogeneity

is modelled by uniform (− − −) or gamma (· · ·) distributions). See appendix for details

of the calculations. Parameters: same as in Figure 2.1 with 〈D〉 = 109.

having a sufficiently low lethal density D that they are killed before the immune response

controls the parasite.

In other words, the case mortality increases with increasing heterogeneity as a con-

sequence of the following two changes. First, increasing heterogeneity in D (when the

parasite growth rate r is fixed and is below the optimal value r∗ given by equation (2.4))

results in an increasing fraction of hosts having a peak parasitemia above the lethal den-

sity D; this leads to increasing case mortality. Second introducing heterogeneity changes

the optimal growth rate ropt (ropt = r∗ when heterogeneity is zero). All else being equal,

decreases in ropt lead to a reduction in the peak parasitemia; this leads to decreasing case

mortality. As heterogeneity increases from zero to higher values these two changes pull

the case mortality in opposite directions, and for non-linear equations we find it hard to

intuit the net result. The results of our analysis show that the net effect is an increase in

case mortality with increasing heterogeneity.

Panel F of Figure 2.2 shows how the LD50 changes with increasing heterogeneity.

In the absence of heterogeneity the LD50 is just above the initial parasite density, P0.
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As heterogeneity increases, the LD50 first increases and then decreases. Changes in the

LD50 arise as a consequence of the changes in the optimal growth rate of the parasite as

heterogeneity increases; the LD50 varies inversely with the parasite’s growth rate r (see

Appendix for details).

Taken together, Panels E and F highlight the critical dependence of our qualitative

conclusions regarding virulence evolution on the way in which we choose to measure viru-

lence. The case mortality is the more appropriate measure of virulence as it more closely

reflects the actual host mortality caused by the infection and thus the reduction in the

host’s fitness (i.e. virulence) whereas the LD50 is an indirect measure of virulence. In ad-

dition, our results show clearly that virulence of a parasite measured by the case mortality

does not necessarily decrease as host heterogeneity increases.

2.2.2.3 Heterogeneity in other parameters

We now briefly describe the consequences of introducing heterogeneity in the other pa-

rameters describing the interaction of the parasite with the immune response. We do so

by looking at how the introduction of heterogeneity in the other parameters changes the

total transmission, the optimal growth rate of the parasite and its virulence (Figure 2.3).

As it can be seen in Figure 2.3 the addition of heterogeneity in the parameters h, X0,

and k gives similar results to those arising from variation in D described previously.

The addition of heterogeneity in the size of initial inoculum, P0, leads to much smaller

changes in the total transmission, the optimal growth rate of the parasite and its virulence.

While these changes are too small to be seen when plotted with changes in the other

parameters they follow the same trend (results not shown). For example, total transmission

decreases monotonically with increasing heterogeneity in P0. In contrast the addition of

heterogeneity in the growth rates r leads to larger changes (in total transmission, optimal

growth rate and virulence) in comparison with those observed following the addition of

heterogeneity to D.

Only in the case of heterogeneity in the maximum growth rate of immune cells, s, we
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find that while the behavior is qualitatively similar to that for the other parameters at

low levels of heterogeneity, it is qualitatively different when heterogeneity is large. The

difference arises because when heterogeneity in s is large there are some hosts with very

small s, and in these hosts the immune response develops very slowly, and allows for

prolonged transmission of parasites with low rates of growth r. Consequently at very high

levels of heterogeneity in s the optimal growth rate ropt declines, the total transmission

begins to increase and the case mortality drops. We note that when s is small the infection

ceases to be an acute infection of short duration.

2.2.3 Estimating epidemiological parameters

In the Introduction, we contrasted the within-host approach taken in Sections 2.2.1 and

2.2.2 with the epidemiological approach commonly employed to study virulence evolution.

In this section, we derive the connection between these two modeling approaches, and

demonstrate that the epidemiological parameters of parasite transmission depend explic-

itly on the within-host dynamics. From the within-host dynamics, we can calculate the

epidemiological parameters which define the basic reproductive rate of the parasite (equa-

tion (3.1)) — namely the rate of parasite transmission from infected to susceptible hosts,

β, and the rates of parasite-induced host mortality, α, and recovery, ν, — and examine

the resultant trade-offs between these epidemiological parameters. The epidemiological

parameters can be obtained from the within-host dynamics as follows.

First, the basic reproductive number, R0, is proportional to the average number of

parasites transmitted from an infected host over the course of acute infection, i.e. R0(r) =

uL(r), where u is a coefficient of proportionality. Second, the transmission rate of a

parasite with the growth rate r from a host with a lethal density D equals the total

transmission of the parasite over the course of acute infection, l(r, D), divided by the

duration of acute infection, ∆(r, D):
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Figure 2.3: Consequences of heterogeneity in other parameters on the evolution of mi-

croparasites. We compare the consequences of heterogeneity in the different parameters

for the total transmission (Panel A), the optimal growth rate (Panel B), case mortality

(Panel C) and LD50 (Panel D). Heterogeneity in D (· · ·), k (—), h(X0) (−−−), P0 (- - -),

r (− · −), and s (− · ·−) is modelled by a gamma distribution. Parameters: the same as

in Figure 2.1 with 〈P0〉 = 1, 〈X0〉 = 1, 〈h〉 = 10−3, 〈k〉 = 103, 〈D〉 = 109, 〈s〉 = 1.
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β(r, D) = u
l(r, D)

∆(r, D)
, (2.8)

where l(r, D) is given by the equation (2.5) and ∆(r, D) is derived in the Appendix. The

average transmission rate of the parasite, β(r), from the host population with heterogeneity

described by the distribution f(D) is:

β(r) =
∫ ∞

0
β(r, D)f(D)dD = u

∫ ∞

0

l(r, D)

∆(r, D)
f(D)dD. (2.9)

The mortality rate, α, equals the rate of parasite-induced host death following infection.

If hosts die following infection then α is inversely proportional to the average duration of

the infection. If hosts survive the infection then α is zero. If m(r, D) equals the case

mortality (derived in the Appendix) and ∆(r, D) equals the duration of infection we get

α(r, D) =
m(r, D)

∆(r, D)
. (2.10)

Similarly, the recovery rate of hosts with a lethal density D infected with a parasite with

growth rate r is

ν(r, D) =
1−m(r, D)

∆(r, D)
.

The average recovery and mortality rates of the host population with heterogeneity de-

scribed by the distribution f(D) are found similarly to the average transmission rate β(r):

α(r) =
∫ ∞

0
α(r, D)f(D)dD =

∫ D∗

0

f(D)

∆(r, D)
dD, ν(r) =

∫ ∞

D∗

f(D)

∆(r, D)
dD, (2.11)

where D∗ = k
(

r
heX0

)r/s
.

Using the derived expressions for the epidemiological parameters we illustrate (i) how β,

α, and ν change as a function of the growth rate of the parasite r when host heterogeneity

is held at a fixed level; (ii) what are the trade-offs between these parameters for parasites

with different growth rates (Figure 2.4).
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Panel A of Figure 2.4 shows the virulence and recovery rates. We see that the mortality

rate α increases with the parasite’s growth rate r; the rate of increase is greatest when

r is close to its optimal value at a given level of host heterogeneity (ropt ≈ 2.06 for

CVD = 0.50). The average rate of recovery ν initially decreases only gradually with

increasing r, as the duration of infection gets slightly shorter. Thereafter, as more hosts

die, the rate of recovery rapidly declines. Panel B of Figure 2.4 shows that the transmission

rate, β(r), increases with r until the growth rate at which transmission is maximum, and

thereafter drops to u〈D〉/ ln〈D〉. We note that since R0(r) is directly proportional to the

total transmission, the change in this measure as a function of growth rate r corresponds

to the graph for the total transmission, L(r), as shown in Figure 2.2 Panels A&B.

Finally, we visualize some of the trade-offs between the basic reproductive number R0,

the mortality rate α, and the recovery rate ν. We focus on those trade-offs which have

been explored in the epidemiological literature (Fenner and Ratcliffe, 1965; Anderson and

May, 1982). In Panel C of Figure 2.4 we show how the basic reproductive number R0

changes with the level of virulence α. We find that R0 is maximized at intermediate levels

of virulence. In Panel D we show the trade-off between virulence and the recovery rate,

and find a nearly-linear relationship between these parameters. The shapes of both these

trade-offs are qualitatively consistent with those estimated from experimental data of the

myxomatosis infection in rabbits in Australia (Fenner and Ratcliffe, 1965; Anderson and

May, 1982).

2.3 Summary

In this paper we have used a simple mathematical model to analyze how host heterogene-

ity affects the within-host dynamics and evolution of microparasites in vertebrate hosts.

We introduce a simple form of heterogeneity, the ”random” heterogeneity which arises

inevitably in host populations due to factors such as stochastic variation in the initial

density of the parasite, the precursor frequency of immune cells specific for the parasite,
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induced host mortality rate, α. Parameters: the same as in Figure 2.2 except N = 103

and u = 2 · 10−12, host heterogeneity in D is modelled by a gamma distribution.
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as well as the parameters h, k, and D which determine the within-host dynamics of the

parasite. We find that: (i) parasites evolve to an intermediate growth rate, which changes

with increasing heterogeneity; (ii) the total transmission of the evolved parasite decreases

as heterogeneity is increased; (iii) the observed pattern of virulence evolution is sensitive

to the measure of virulence employed (case mortality versus LD50, the former of which

provides the preferable measure); (iv) in contrast to the generally accepted view, virulence

does not necessarily decrease with increasing heterogeneity, and indeed is likely to increase

with increasing heterogeneity; (v) the parameters for epidemiological spread of the disease

can be estimated from the within-host dynamics, and in doing so we can examine the

trade-offs between these epidemiological parameters that result from the interaction of

the parasite and the immune response of the host.

Our finding — that parasites should cause more damage to the host population when

hosts are heterogeneous — seems to contradict the widespread belief that the evolution

of parasites in heterogeneous populations should select for less virulent parasites (Ebert

and Herre, 1996; Ebert, 1998; Regoes et al., 2000). The different predictions of the earlier

papers and our model arise from the way heterogeneity is introduced. In the previous

papers heterogeneity in the host population implicitly imposes a trade-off on the parasite.

The consequence of this trade-off is that doing well in one type of hosts impairs the fitness

of the parasite when it infects the other type of hosts. In our model we only introduce

random or stochastic heterogeneity in the parameters (i.e. we do not impose any specific

trade-offs).

In reality we could find both types of heterogeneity. Random heterogeneity (i.e. small

differences in parameters governing the host-parasite interactions) is expected to be present

in any host population due to phenotypic (or other) differences between individual hosts.

When this happens our model predicts that virulence, measured by the case mortality

rate, will increase with increasing random heterogeneity. “Trade-off” heterogeneity may

be found in other cases. The evidence, suggesting that “trade-off” heterogeneity exists,

includes serial passage experiments where the increase in virulence of parasites when they
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are serially passaged through one host type is frequently linked with a decrease in the

parasites virulence in another host type (Ebert, 1998). Ultimately, our understanding of

virulence evolution will benefit from incorporation of both random and trade-off forms of

heterogeneity into evolutionary models, so as to assess the relative importance of these

two sources of variation.

2.4 Appendix

The optimal growth rate of the parasite and the total transmission of the

parasite from an infected host. By dividing first equation of the system (2.2) by

second and integrating we obtain:

log

(
P + k

P0 + k

)
=

r

s
log

(
X

X0

)
− h

s
(X −X0). (2.12)

Noting that the maximal transmission occurs when P (t) approaches the lethal density

D, we set P ′(t) = 0 and obtain X(t) = r/h. Since the maximal transmission occurs at

r = r∗, we find the equation (2.4) with the use of the equation (2.12) at the limits P0 � k,

D � k and hX0/s � 1. When the total transmission of the parasite from an infected

host is proportional to the total density of the parasite we obtain:

l(r) = c
∫ ∞

0
P (t)dt = c

∫ Xmax

X0

P (t) + k

sX
dX =

c(P0 + k)

hX0

ehX0/s
(

s

hX0

)r/s−1 ∫ hXmax/s

hX0/s
yr/s−1e−ydy. (2.13)

At the approximations P0 � k and hX0/s � 1 the equation (2.13) can be simplified:

l(r) =
kc

s

(
s

hX0

)r/s ∫ hXmax/s

0
yr/s−1e−ydy. (2.14)

When r < r∗ (r∗ defined by the equation (2.4)), an infected host clears the infection by a

greatly expanding population of immune cells; therefore, at the approximation hXmax/s �

1 we obtain:
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l(r) ≈ kc

s

(
s

hX0

)r/s ∫ ∞

0
yr/s−1e−ydy =

kc

s

(
s

hX0

)r/s

Γ(r/s) (2.15)

where Γ(x) is the Euler gamma function (note that Γ(x) = (x− 1)! for integral x). When

r � r∗, we can assume that immune cells do not expand; approximating exp(−y) at

y ∈ (0, hXmax/s � 1) as 1, we obtain the following expression for the total transmission

of the parasite from an infected host at r � r∗:

l(r) = c
D

r
. (2.16)

The duration of acute infection. We consider the duration of acute infection for the

cases when r < r∗ and r > r∗ separately (r∗ is given by the equation (2.4)).

If r > r∗ the parasite kills the host; approximating that the parasite population grows

exponentially until it kills the host, the duration of acute infection ∆(r, D) will be:

∆(r, D) ≈ ln(D/P0)

r
. (2.17)

If r < r∗ then the parasite is cleared by the immune response; the duration of acute

infection is found by integrating the equation for dX/dt in equation (2.2):

∆(r, D) =
∫ Xmax

X0

P + k

sXP
dX, (2.18)

where the relationship between the number of immune cells, X, and parasite density, P ,

at any given moment is given in the equation (2.12). Substituting P (X) from (2.12) the

duration of the acute infection when r < r∗ equals:

∆(r, D) =
∫ Xmax

X0

dx

sx

(
1− k

P0 + k

(
X0

x

)r/s

eh(x−X0)/s

)−1

, (2.19)

where the maximum density of immune cells (Xmax) is approximately found in the equa-

tion: r ln(Xmax/X0) ≈ h(Xmax −X0). Summarizing, the duration of acute infection is:
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∆(r, D) =


ln(D/P0)

r
, if D < k

(
r

heX0

)r/s
,∫Xmax

X0

dx
sx

(
1− k

P0+k

(
X0

x

)r/s
eh(x−X0)/s

)−1

, otherwise.
(2.20)

If f(D) describes the distribution of lethal densities D in the host population then the

average duration of acute infection corresponding this distribution will be:

∆(r) =
∫ ∞

0
∆(r, D)f(D)dD. (2.21)

Virulence defined by the case mortality. The case mortality is the probability of

host death due to the infection. In a host population with heterogeneity defined by the

f(D), the average case mortality M(r) can be calculated as follows. The maximum density

reached by a parasite with the growth rate r during acute infection in the model (2.2) is

given by the equation (2.4), i.e., Pmax ≈ k
(

r
heX0

)r/s
. Therefore, hosts with threshold

densities less than Pmax (D < Pmax) will die when infected with such a parasite strain

while others will survive. Hence, the case mortality m(r, D) will be:

m(r, D) =


1, if D < k

(
r

heX0

)r/s
,

0, otherwise.
(2.22)

The average case mortality rate M is simply equal to the fraction of the host population

with threshold densities less than the maximum density Pmax reached by the parasite:

M(r) =
∫ ∞

0
m(r, D)f(D)dD =

∫ Pmax

0
f(D)dD. (2.23)

Virulence defined by the lethal density LD50. The LD50 is the initial dose of the

parasite required to kill 50% of infected hosts in a fixed period of time (Davis et al., 1969).

We derive the LD50 when this period of time is greater than (or equal to) the duration of

acute infection. The results obtained under this condition are similar to those found when

the fixed period is shorter (not shown).

We calculate the LD50 as follows. The maximal density obtained by a parasite with

growth rate r during the course of acute infection is given in the equation (2.12):
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Pmax ≈ (P0 + k)
(

r

heX0

)r/s

. (2.24)

The average case mortality is defined in the equation (2.23), with Pmax from the equa-

tion (2.24). Since the initial size of the parasite population is now variable, we define LD50

as the density P0 at which the case mortality M is one half:

LD50(r) = P0 :
∫ (P0+k)

(
r

heX0

)r/s

0
f(D)dD =

1

2
. (2.25)

Solving this integral equation for a given distribution f(D) provides an estimate for

LD50. When the variance of the distribution f(D) is small, the solution of equation (2.25)

is approximately:

LD50(r) ≈ 〈D〉
(

heX0

r

)r/s

− k, (2.26)

where 〈D〉 is the average lethal density in the host population.

2.5 Publication status

Ganusov, V.V., Bergstrom, C.T. and Antia, R. (2002) Within host population dynamics

and the evolution of microparasites in a heterogeneous host population. Evolution 52:

213–23
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Chapter 3

Trade-offs and the evolution of

virulence of microparasites: do

details matter?

Abstract

Models of the within-host dynamics of parasites have been used to consider the

evolution of microparasites causing acute infections in vertebrate hosts. In this

paper, we use these models to examine how the level of virulence to which a parasite

evolves, depends on factors such as the relationship between parasite density and

its rate of transmission from infected hosts, and the mechanism of parasite-induced

pathogenesis. We show that changes in the terms describing transmissibility and

pathogenesis may lead to dramatic differences in the level of virulence to which

a parasite evolves. This suggests that no single factor is likely to be responsible

for the differences in virulence of different parasites, and that understanding of the

evolution of virulence of parasites will require a detailed quantitative understanding

of the interaction between the parasite and its host.



67

3.1 Introduction

Why are parasites1 virulent? The adaptive model suggests that the level of virulence of a

parasite is a consequence of its evolutionary adaptation to maximize its total transmission

from infected hosts (Anderson and May, 1982). While we focus on this adaptive model,

we note that there are alternatives — the virulence of some parasites may be coincidental

(Bull, 1994; Levin and Bull, 1994; Ebert, 1999; Weiss, 2002), or may depend on the com-

petition between different parasite strains within infected hosts (Frank, 1992; Bonhoeffer

and Nowak, 1994b; Nowak and May, 1994; May and Nowak, 1995; van Baalen and Sabelis,

1995).

The adaptive model can be understood in terms of the epidemiology of the infection,

and in particular in terms of the basic reproductive number, R0, of the infection caused by

the parasite. R0 is defined as the number of secondary infections produced by one infected

host in a wholly susceptible population (Bremermann and Thieme, 1989; Anderson and

May, 1991). In the adaptive model the parasite evolves to maximize its total transmission,

and this is equivalent to maximizing R0 (Bremermann and Thieme, 1989; Anderson and

May, 1991). The R0 of a directly transmitted infection can be written as:

R0 =
βN

b + α + ν
, (3.1)

where β is the average transmissibility of the infection, α and b are the rate constants for

the parasite-induced and natural host mortality, ν is the rate of recovery from infection,

and N is the density of susceptible hosts. The trade-offs between transmissibility β, host

recovery rate ν and virulence α determine the values of these parameters at which R0 is

maximum. The existence of some of these trade-offs is intuitive. For example, pathogens

which cause infections with higher parasite densities might be expected to have higher

transmissibility (β) and higher virulence (α), suggesting a positive correlation between

1We use the term parasites for microparasites such as viruses, bacteria, fungi, and protozoa, and focus

on acute infections of vertebrate hosts.
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transmissibility and virulence. However, experimental data on the functional form for these

trade-offs is relatively limited (Fenner et al., 1956; Fenner and Ratcliffe, 1965; Anderson

and May, 1982; Schulman, 1967; Mackinnon and Read, 1999).

Models of the within-host dynamics of parasites have been used to understand how

these trade-offs arise as a consequence of the interaction between the replicating parasite

and the host immune response as well as the transmissibility of the parasite from the

infected host (Sasaki and Iwasa, 1991; Antia et al., 1994; Ganusov et al., 2002; Gilchrist

and Sasaki, 2002).

In Section 3.2 we briefly review a simple model for the within-host dynamics of mi-

croparasites causing acute infections in vertebrate hosts, and illustrate how this model can

be used to understand the evolution of virulence of parasites (Ganusov et al., 2002). In the

subsequent two sections we consider how the changes in some aspects of the interaction

between the parasite and its host in the model affect the evolution of the parasite, and in

particular how they affect the optimal level of virulence to which we expect the parasite

to evolve. We consider two specific modifications to the initial model. In Section 3.3 we

consider the consequences of changing the relationship between the within-host density

of the parasite and its rate of transmission from a linear function to a saturating or an

exponentially increasing function. In Section 3.4 we consider the consequences of changing

the mechanism of pathogenesis by altering the term for parasite-induced mortality. We

find that while these changes do not affect the within-host dynamics of parasites, they

can dramatically alter the level of virulence at which the total transmission of parasites is

maximized.

3.2 Basic Model

We briefly describe a simple model for the within-host dynamics of microparasite infections

of vertebrate hosts (for details see Antia et al. 1994, and Ganusov et al. 2002). The model

assumes the following:
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1. Infection is initiated by a small dose of parasite P (0) which grows exponentially at

the rate r in the absence of the specific immune response.

2. The parasite, P (t), kills the host if its density exceeds a lethal density D.

3. The specific immune response, X(t), is generated by clonal expansion from a popu-

lation of X(0) precursors at the rate sP (t)
k+P (t)

.

4. The specific immune response clears the parasite at the rate hX(t).

5. Because we consider only acute infections (i.e., the parasite is cleared) we do not

consider the subsequent contraction of the immune response.

6. The rate of transmission of the parasite, ζ[P (t)], is directly proportional to its density

within the host, i.e. ζ[P (t)] = P (t).

With these assumptions the equations describing the within-host dynamics of the par-

asite and immune response are:

dP (t)

dt
= P (t)(r − hX(t)), if P (t) < D, (3.2)

P (t) = 0, if P (t) ≥ D, (3.3)

dX(t)

dt
=

sX(t)P (t)

k + P (t)
. (3.4)

The total transmission of the parasite over the course of acute infection (of duration

∆), l(r), is

l(r) =
∫ ∆

0
ζ[P (t)]dt =

∫ ∆

0
P (t)dt. (3.5)

In Figure 3.1A we show the dynamics of the infection for parasites with different growth

rates. In Figure 3.1B we show how the total transmission, l(r), depends on the growth

rate, r, of the parasite. We see that slowly growing parasites are cleared before they

reach high density, and thus achieve relatively little total transmission. Parasites with an
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Figure 3.1: The basic model for the evolution of microparasites. Panel A shows the

within-host dynamics of parasites with different growth rates. Panel B shows the total

transmission of parasites over the course of acute infection as a function of the growth

rate. The dot at r = r∗ denotes the optimal parasite. Panel C shows the virulence (the

case mortality) of the optimal parasite depends on the degree of heterogeneity. Hetero-

geneity is described by the coefficient of variation (CV =
√

variance/mean) in the gamma

distribution chosen for the lethal density, D. Parameters used for simulations: P (0) = 1,

X(0) = 1, h = 10−3, k = 103, s = 1, D = 109.

intermediate growth rate, r∗, which allows them to reach a maximum density just short

of the lethal density before being cleared by the immune response are able to generate the

maximum total transmission. Faster growing parasites, which reach the lethal density D,

kill the host rapidly and this limits the total transmission of the parasite. These results

suggest that evolution will select parasites with an intermediate growth rate.

The model is not able to describe intermediate levels of virulence in a satisfactory

manner. This is because all infections are identical and thus either all hosts survive or

all hosts die following infection. We note that the virulence measured in terms of the

case mortality caused by the evolved parasite is equal to zero. However, an infinitesimal

increase in the growth rate from the optimal level will result in the parasite killing all hosts

(i.e., having a case mortality equal to 1), and a substantial decline in the total transmission

at r > r∗ (which we term the cost of killing the host).

This problem can be resolved by introducing stochastic heterogeneity in the host pop-

ulation, and similar results are obtained if we introduce heterogeneity in the any of the

parameters (Ganusov et al., 2002). In Figure 3.1C we show how introducing heterogeneity

in the lethal density D, results in intermediate levels of virulence (as measured by the

case mortality) of the evolved parasite. We find that the level of virulence increases with
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increasing levels of host heterogeneity.

3.3 Changing the term for transmission

There is some experimental data suggesting that the rate of transmission of parasites from

an infected host, ζ(P ), is positively correlated with the density of parasite within the host,

P (Fenner et al., 1956; Schulman, 1967; Taylor and Read, 1997; Pedraza et al., 1999; Quinn

et al., 2000). However, the functional form of the term for the rate of transmission has not

been quantitatively determined, and furthermore is likely to differ for different infections.

In the earlier model, we chose the simplest possible term, letting ζ(P ) be linearly de-

pendent on P . In this section we consider the consequences of changing ζ(P ) to a function

which increases slower than linearly as well as one which increases faster than linearly

with increases in P . A slower than linear rate of increase in ζ(P ) with P corresponds

to a biological situation where the transmission rate saturates at high parasite densities.

A faster than linear increase in ζ(P ) with P corresponds to a biological situation where

cooperative effects are needed for parasite transmission.

In the first case, when the transmission rate increases slower than linearly with increases

in P , we let ζ(P ) be a simple saturating function

ζ(P ) =
P

1 + P/θ
, (3.6)

where θ is the parasite density at which the transmission rate is half its maximum value.

Biologically we expect that θ � P (0).

In the second case, when the rate of transmission increases faster than linearly, we let

the transmission rate be proportional to the square of the parasite density:

ζ(P ) = P 2. (3.7)

We call these two functions which describe the rate of transmission as a function of the

within-host parasite density as saturating and squared transmission functions, respectively.
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We note that there could be more complex functions for the transmission rate which

increase faster than linearly at low densities and saturate at high densities.

In Figure 3.2A we show the dynamics of the infection for parasites with different

growth rates. We see that, as might be expected, changing the function describing the

transmission rate does not alter the within-host dynamics of infection (plots in Figures

3.1A & 3.2A are identical). In Figure 3.2B we show how the total transmission, l(r),

depends on the growth rate, r, of the parasite for the saturating and squared transmission

functions. In order to facilitate comparisons we plot the value for the total transmission as

a percent of the maximum transmission. We notice that the growth rate r∗ of the parasite

at which the total transmission is maximum is not altered by these changes in the function

describing the transmission rate. When the rate of transmission is a saturating function

we find that the peak in the plot of the total transmission as a function of the growth rate

becomes broader. When the rate of transmission is a squared function we find that the

peak in the plot of total transmission as a function of the growth rate becomes narrower.

In Figure 3.2C we show how virulence of the optimal parasite (measured by the case

mortality) changes with the degree of host heterogeneity. We find that for a given level of

host heterogeneity, parasites with a saturating transmission function evolve lower virulence

and parasites with a squared transmission function evolve higher virulence when compared

to parasites with a linear transmission rate. At high levels of heterogeneity, differences in

the function describing the transmission rate can result in substantial differences in the

level of virulence, as measured by the case mortality. This result occurs because of the

shape of the plot of l(r) vs. r. In the case of the ”saturating” transmission function, as

heterogeneity increases, the parasite obtains more total transmission if it errs on the side

of having a slower growth rate compared with r∗. The converse holds in the case of the

“squared” transmission function.
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Figure 3.2: Consequences of changing the transmission function (the function describing

the rate of transmission as a function of the within-host density of the parasite). Linear

function: ζ(P ) = P , saturating function: ζ(P ) = P
1+P/θ

, “square” function: ζ(P ) = P 2.

Panel A shows that the within-host dynamics of parasites with different growth rates

is not affected by the changes in the transmission function. Panel B shows the total

transmission of parasites (normalized with respect to the maximum transmission) as a

function of the growth rate of the parasite, for the different transmission functions. Panel

C shows the virulence (case mortality) of the optimal parasite as a function of the degree

of host heterogeneity for the different transmission functions. Heterogeneity is described

by the coefficient of variation (CV =
√

variance/mean) in the gamma distribution chosen

for the lethal density, D. Parameters are the same as in Figure 3.1 and θ = 107.

3.4 Changing the term for pathogenesis

In the basic model pathogenesis was introduced by having a lethal parasite density, D.

We assumed that the parasite kills infected hosts when it reaches this density within the

host. There are many other mechanisms by which the parasite can induce pathogenesis.

In this section we consider the consequences of changing the term for parasite-induced

pathogenesis from lethal density to resource depletion (Marsh and Snow, 1997). In the

resource depletion model, we assume that the parasite consumes a resource within the host,

and this can cause the infected host to die if the level of resource falls below a threshold

value. We call these two models the lethal density model and the resource depletion model.

We use a chemostat-type model for the resource, R (Pirt, 1975). Resource is generated

at the rate dR(0), and has a background turnover rate d. We assume that the parasite’s

growth rate is dependent on the consumption of the resource at the per capita rate rR/(c+

R) (Monod, 1949), and conversion efficiency y. Pathogenesis is introduced by assuming
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that the parasite kills the host if the resource density falls below some critical value

Rd < R(0). The terms for the immune response and transmission rate remain unchanged

from the earlier model (i.e., Eqns. (3.4) and (3.5)). The rates of change in the density of

resource, R(t), and parasite, P (t), are thus given by the equations:

dR(t)

dt
= d(R(0)−R(t))− y−1 rR(t)P (t)

c + R(t)
(3.8)

dP (t)

dt
=

rR(t)P (t)

c + R(t)
− hX(t)P (t), if R(t) > Rd, (3.9)

P (t) = 0, if R(t) ≤ Rd. (3.10)

For simplicity, we consider the case when the rate of the resource turnover is slow in

comparison with the time scale of an acute infection (i.e., d = 0), and parasite growth

is not resource limited (i.e., Rd > c). A more comprehensive discussion of the other

possibilities is presented in Appendix 2.

In Figure 3.3A we show the dynamics of the infection for parasites with different growth

rates in the resource depletion model. To facilitate comparisons we choose Rd such as the

optimal growth rate in this model in the absence of host heterogeneity is the same as in

the lethal density model r = r∗ = 2.08. We see that the within-host dynamics of infection

are not substantially changed when the mechanism of pathogenesis is changed from lethal

density to resource depletion. More detailed analysis revealed that when the growth rate

is slightly greater than the optimal value (i.e., r = r∗ + ε, where ε is small) the parasite

depletes the resource when it has been almost cleared. Consequently, there is only a

minimal loss of transmission due to killing the host (in comparison with the large cost of

killing the host in the lethal density model described earlier). This is reflected in Figure

3.3B we show how the (normalized) total transmission, l(r), depends on the growth rate,

r, of the parasite. We see that the major change introduced by this model occurs when

the growth rate, r, exceeds optimal growth rate, r∗ (i.e., when r > r∗). In this regime

the resource depletion model gives a more gradual decrease in the total transmission with

increasing growth rate r than the earlier lethal density model.
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Figure 3.3: Consequences of changing the mechanism of pathogenesis from a lethal density

to resource depletion. Panel A shows the within-host dynamics of parasites (thick lines)

and resource (thin lines) for parasites with different growth rates. Panel B shows the total

transmission of parasites (normalized with respect to the maximum transmission) as a

function of the growth rate of the parasite for the lethal density and resource depletion

models. Panel C shows the virulence (case mortality) of the optimal parasite as a function

of the degree of host heterogeneity for the lethal density and resource depletion models.

Heterogeneity is described by the coefficient of variation (CV =
√

variance/mean) in the

gamma distribution chosen for the lethal density, D, or minimum resource density, Rd.

Parameters used for simulations are the same as in Figure 3.1 and R(0) = 104, c = 103,

y = 105, Rd = 2.7 · 103, d = 0.

In Figure 3.3C we show how virulence of the optimal parasite (measured by the case

mortality) changes with the degree of host heterogeneity (introduced in the lethal density

D in the lethal density model and the critical resource density Rd in the resource depletion

model). In the lethal density model, the case mortality increases slowly with increasing

heterogeneity. In contrast, in the resource depletion model the case mortality increases

very rapidly with increasing heterogeneity and then saturates. These results suggest that

changing the mechanism of pathogenesis can substantially alter the virulence of an evolved

parasite.

3.5 Discussion

There is a large body of literature on the evolution of parasite virulence and the reader

is directed to excellent reviews on this subject (e.g., (Bull, 1994; Frank, 1996; Ebert,

1999)). The hypotheses for the observed virulence of parasites include the following. (i)
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The virulence of parasites may be coincidental (i.e., unrelated to their fitness) (Levin and

Bull, 1994). (ii) The virulence of parasites may arise as a consequence of the within-

host competition resulting from high mutation rates, co- or superinfection (Frank, 1992;

Bonhoeffer and Nowak, 1994b; Nowak and May, 1994; May and Nowak, 1995; van Baalen

and Sabelis, 1995; Mosquera and Adler, 1998). (iii) The virulence of parasites may arise

as a consequence of their evolutionary adaptation to maximize their total transmission in

the host population (Anderson and May, 1982). In this latter view, known as the adaptive

framework, virulence arises as a consequence of the trade-offs between the transmission

rate, host recovery rate, and virulence of the infection caused by the parasite. We also

note that, in general, the evolution of the host in response to the parasite will result in the

reduction of parasite virulence, possibly leading to a co-evolutionary arms-race between

parasite and host (Gilchrist and Sasaki, 2002).

We have focused on the adaptive framework. Within this framework, a number of fac-

tors, including the route of parasite transmission (Ewald, 1983), host resistance (Gandon

et al., 2001a), and the interaction of the parasite and the host immune response (Antia

et al., 1994), have been proposed to affect the optimal level of virulence.

In this paper, we used a model of the within-host dynamics of microparasites that

cause acute infections in vertebrate hosts. Using this model we explored how changes in

the rate of parasite transmission from infected hosts and mechanisms of parasite-induced

pathogenesis affect the level of virulence to which a parasite evolves. Our results suggest

that changing the transmission rate or mechanism of pathogenesis can result in dramatic

changes in this optimal level of virulence of the parasite.

What are the implications of our results for understanding the evolution of virulence of

parasites? Our major result is that predicting the optimal level of virulence of a parasite

will require a detailed quantitative understanding of the interaction of the parasite and

its host. These could include the mode of parasite transmission (direct, indirect, vector-

borne, etc.), how the rate of transmission depends on the parasite density, the interactions

between the parasite and non-specific immunity (Antia and Koella, 1994; Pilyugin and An-
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tia, 2000), the mechanisms of generation of specific immune responses (Kaech et al., 2002;

Antia et al., 2003), intra-host competition (Leung and Forbes, 1998), different mechanisms

of parasite-induced pathogenesis (target cell vs. resource depletion, toxin production, etc),

and host heterogeneity (Ebert and Hamilton, 1996; Regoes et al., 2000; Ganusov et al.,

2002). Furthermore, our results strongly suggest that in the absence of such an under-

standing it may be difficult to predict the extent to which changes in a single parameter

will change the optimal level of virulence of a parasite.

3.6 Appendix 1: Calculating the average total trans-

mission and case mortality

For a parasite with the growth rate r we calculate two parameters: (1) the average total

transmission of the parasite in a heterogeneous host population, L(r), representing fitness

of the parasite, and (2) the case mortality caused by the parasite, M(r), representing

virulence of the parasite. To describe host heterogeneity, we use a gamma distribution of

the lethal density D. Then f(D) dD is a probability of choosing a host with the lethal

density in the range (D, D + dD).

The average total transmission of a parasite with the growth rate r in a heterogeneous

host population characterized by the probability distribution f(D) is

L(r) =
∫ ∞

0
l(r, D)f(D) dD. (3.11)

where l(r, D) is the total transmission of a parasite with the growth rate r infecting a host

with the lethal density D (l(r, D) is given in Eq. (3.5)). We numerically calculate the

integral in Eq. (3.11) by evaluating l(r, D) · f(D) for every D at fixed r.

We find the optimal growth rate of the parasite ropt at which the average total trans-

mission L(r) reaches its maximum using a “finding a minimum” algorithm (brent) from

the Numerical Recipes (http://www.library.cornell.edu/nr/bookcpdf/c10-2.pdf).
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The case mortality is the probability that a randomly chosen host will die following

infection. To estimate the case mortality of a parasite with the growth rate r, we first

calculate the maximum density, Pmax(r), that the parasite can reach during the acute

infection (assuming no host mortality, i.e., D = ∞). The case mortality is simply the

fraction of hosts which have their lethal densities below Pmax(r):

M(r) =
∫ Pmax(r)

0
f(D)dD. (3.12)

3.7 Appendix 2: The evolution of extra-cellular mi-

croparasites depleting host resources during the

acute infection

In the main text we restricted our analysis of the resource depletion model to a particular

case when the rate of the resource turnover is zero, i.e., d = 0. Here we investigate how

the rate of the resource turnover, d, affects the evolution of extracellular parasites that

kill their hosts by depleting the host resource during acute infection.

We find that there are two critical parameters in the model which determine the within-

host dynamics of parasites. These are the rate of the resource turnover, d, and the critical

resource density, Rd. The last parameter affects the dynamics of parasites differently

depending on whether Rd � c or Rd � c, where c is the half-saturation constant for the

growth rate of the parasite (see eq. (3.9)). In all cases the parasite that depletes the host

resource until the density Rd achieves maximal total transmission.

When Rd � c, the parasite grows approximately exponentially at the maximum rate

r until it either kills the host or is controlled and cleared by the immune response. As the

rate of the resource turnover, d, increases, we find that (1) the optimal growth rate of the

parasite increases at all else being equal, and (2) the minimal density of the resource during

the acute infection becomes inversely correlated with the peak of parasitemia (Figure
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Figure 3.4: The evolution of extra-cellular microparasites according to the resource de-

pletion model in a heterogeneous host population. Panels A & B show the within-host

dynamics of optimal parasites at different rates of resource turnover d when the minimal

resource density is high (A, Rd = 2.7 · 103 � c) and low (B, Rd = 102 � c). Thick lines –

parasites, thin lines – resources, a dashed horizontal line denotes the minimal resource den-

sity Rd. Panels C & D show the total transmission of parasites (normalized with respect to

the maximum transmission) over the course of acute infection as a function of the growth

rate at high (C) and low (D) minimal resource density. The rate of the resource turnover

is marked. Panels E & F show virulence (case mortality) of the optimal parasite as a func-

tion of the resource turnover rate when minimal resource density Rd is high (E) or low (F).

Heterogeneity is described by the coefficient of variation (CV =
√

variance/mean) in the

by the gamma distribution chosen for the minimal resource density Rd. Note that higher

levels of host heterogeneity lead to higher case mortality in accordance with previous

results. Parameters are the same as in Figure 3.3 with d > 0.

3.4A). Both changes are intuitively obvious. As the rate of resource turnover increases,

the minimal resource density during the infection increases; therefore, in order for the

parasite to deplete the resource to Rd, it must increase its growth rate. At high rates

of resource turnover the resource becomes a ”fast” variable, changes in which are rapidly

adjusted to the changes in the parasite density.

The parasites with the growth rate just infinitesimally higher than the optimal will pay

much higher cost of killing the host (i.e., loss in the total transmission) when the rate of

resource turnover is high (Figure 3.4C). As a consequence we find that the optimal level

of virulence, measured by the case mortality, monotonically decreases with the increasing

rate of the resource turnover for a given level of heterogeneity in Rd (Figure 3.4E).

When Rd � c the within-host dynamics of the parasite and resource remain similar

to the previous case except the case when the resource turnover is high. When d is
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high, parasite density saturates as the resource density falls below c (Figure 3.4B). The

growth rate at which the total transmission of the parasite is maximal increases with the

increasing rate of resource turnover. The cost of killing the host is also high when the

resource turnover is high (Figure 3.4D).

However, in contrast with the previous case, the optimal level of virulence of the

parasite is not strictly a decreasing function of the turnover rate d (Figure 3.4F); even

though the general trend is observed, at some intermediate turnover rates (d = 10−1 −

5 · 10−1) the case mortality increases with the increasing turnover rate. There are two

factors which lead to changes in the case mortality. First, as the rate of resource turnover

increases, the case mortality of a parasite with the fixed growth rate r decreases because

the parasite depletes less resource (see Figure 3.4A–B). On the other hand, an increase in

the growth rate at fixed d will lead to a higher case morality because the parasite depletes

the resource to a lower density. As the rate of resource turnover increases, the optimal

growth rate increases, and as the result, the case mortality may change in either way

(decrease or increase), depending on which of the changes (turnover rate vs. growth rate)

has a greater impact. It seems that the general trend is nevertheless robust — when the

resource turnover is high, the optimal level of virulence of the parasite is low and vice

versa.

These changes in the optimal level of parasite virulence with changes in the rate of

resource turnover are not specific to heterogeneity in Rd; the same trend is observed

when heterogeneity is introduced into the parameter k (see Eq. (3.4) and Figure 3.5).

Interestingly, with heterogeneity in k the case mortality decreases monotonically with the

rate of resource turnover d even at Rd � c.

Explicit trade-offs. Previously we assumed that parasites evolve their growth rate r

and that changes in the growth rate do not affect other parameters. However, we might

expect that parasites that grow faster may utilize the resource with lower efficiency. What

would happen if such a trade-off is explicitly introduced into the resource depletion model?

We tested two different types of the trade-off: linear (y(r) = y0(10−r)) and hyperbolic
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√

variance/mean). Parameters are the

same as in Figure 3.3 except Rd = 102.

(y(r) = y0/r), and the qualitative trend seems to be independent of the particular trade-

off type (not shown). The difference between the maximum total transmission (at r = r∗)

and total transmissions of parasites with smaller growth rate (r < r∗) is lower when

there is trade-off (Figure 3.6A; the difference is obvious when d = 10 but is too small to

be seen for d = 0.01). Parasites with higher growth rates (r > r∗) have a lower total

transmission when there is a trade-off. Introducing heterogeneity in Rd we find that the

trade-off between efficiency of resource consumption and the growth rate generally leads

to selection of less virulent parasites (Figure 3.6B); the exact nature of the trade-off (for

example, linear vs. hyperbolic) also influences the exact level of virulence parasites evolve

(not shown).

3.8 Publication status

Ganusov, V.V., and Antia, R. (2003) Trade-offs and the evolution of virulence of micropar-

asites: do details matter? Theor Pop Biol 64: 211–220
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Figure 3.6: The evolution of extra-cellular microparasites when there is a constrain (trade-

off) on the efficiency of resource consumption y and the growth rate r. Panel A shows the

total transmission of parasites (normalized with respect to the maximum transmission)

over the course of acute infection as a function of the growth rate in the absence (solid lines)

and presence (dashed lines) of the trade-off. The rate of the resource turnover is marked.

Trade-off functions used are y = 4.9 · 105/r for d = 10 and y = 2.2 · 105/r for d = 0.01

(parameters are chosen to provide peaks of the total transmission at the same growth

rates at two rates of resource turnover). Panel B shows virulence (case mortality) of the

optimal parasite as a function of the resource turnover rate in the presence or absence of

the trade-off. Heterogeneity is decribed by a gamma distribution in the minimal resource

density Rd (CV = 40%, Rd = 102). For a linear trade-off (y = 105(10− r)) similar results

were obtained (not shown). Parameters are the same as in Figure 3.4.
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Chapter 4

The role of the CTL response and

virus cytopathogenecity in the virus

decline during antiviral therapy

Abstract

Although it is clear that HIV can lyse HIV-infected CD4 T cells, it is still con-

troversial whether the depletion of CD4 T cells seen in HIV-infected patients after

years of asymptomatic disease is due to direct cytopathic effects of the virus or is

mediated by the immune response. Assuming that the initial decline in viremia

during active antiretroviral therapy (HAART) is due to death of cells, productively

infected with HIV, we investigate how the rate of the virus decline is affected by the

efficiency of the CTL response. We find that whether the stronger immune response

causes more rapid virus decline depends critically on how the virus is controlled by

the CTL response (lytic vs. nonlytic mechanisms). Moreover, the variation in the

efficiency of the immune response does not always cause variation in the rate of the

virus decline (and therefore, in the death rate of infected cells), implying that the

constancy of the virus decline rate measured in different patients does not necessarily

indicate that the virus is cytopathic. The potential problems associated with the

model and undertaken approach are also discussed.
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4.1 Introduction

It is still unknown whether HIV is cytopathic in vivo, i.e., whether the depletion of CD4

T cells serving as a primary target for HIV occurs mainly due to killing of virus-infected

cells by the virus itself (Perelson, 2002). An alternative hypothesis is that the virus is

relatively non-cytopathic in vivo and the majority of cell death occurs due to immune

response mediated destruction of virus-infected cells (Klenerman and Zinkernagel, 1997).

Both hypotheses are supported by indirect evidence at least in vitro but conclusive evidence

of the relative role of these two processes in vivo is still lacking. Understanding of why

virus-infected cells die may help design better therapies of treatment of the disease and

other strategies for slowing or stopping the disease progression.

HIV is clearly cytopathic in vitro: in culture cells infected with the virus die more

rapidly than uninfected controls (Levy, 1998); it is likely that both the direct killing of

infected cells by the virus and indirect killing of bystander uninfected cells contribute to

this effect (McCune, 2001). Similarly, cytotoxic T lymphocytes (CTLs) can lyse HIV-

infected cells in a standard 51Cr release assay (Klenerman et al., 1996; Yang et al., 1996).

It has been difficult, however, to evaluate the relative role of these two processes in the

life-span of productively infected CD4 T cells. Using drugs preventing virus replication,

it has been estimated that such cells live on average 1 day with little variation between

individuals with different CD4 T cell counts (Wei et al., 1995; Ho et al., 1995; Perelson

et al., 1996; Perelson, 2002). This observation has led to a suggestion that HIV must be

highly cytopathic in vivo killing CD4 T cells in approximately 1 day. Otherwise, if the

life-span of infected cells were determined by the immune response, one would expect much

greater variation in the life-span of infected cells between different individuals with different

immune responses (Nowak et al., 1996). This verbal argument is further supported by

mathematical modeling suggesting that the life-span of cells infected with non-cytopathic

viruses should vary to a greater extend when measured in patients with different immune

responses than for highly cytopathic viruses (Klenerman et al., 1996).
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The main problem with such verbal logic and supporting mathematical modeling,

however, is that immune responses have not been incorporated explicitly into the models.

This makes it difficult to evaluate which parameters and processes are important in such

a conclusion. Recently, Arnaout et al. (2000) analyzing the dynamics of virus-infected

cells and CTLs during HAART have found that the life-span of virus-infected cells may be

independent of the efficiency at which CTLs lyse virus-infected cells. Here we extend their

analysis and reanalyze factors that may lead to variation in the life-span of productively

infected T cells between different patients.

We do that by assuming that the initial decline in viremia during HAART is due to

death of cells, productively infected with the virus1; therefore, the rate of virus decline

is proportional to the death rate of virus-infected cells. Given that we further focus on

whether the efficiency of the CTL response may affect the decline rate of the virus during

HAART (and therefore, the life-span of infected cells).

We find that whether the immune response affects the rate of virus decline depends

critically on how the virus is controlled by CTLs. If the virus is controlled only either

by killing virus-infected cells or by reducing rate of virus replication (through a release

of antiviral cytokines and chemokines), then variation in the efficiency of the immune

response does not lead to variation in the life-span of infected cells. This is simply because

the efficiency of the immune response (that is the rate at which a given effector cell

kills a virus-infected cell) is compensated by the number of HIV-specific CTLs. This

in turn happens because to balance the virus replication and virus death at the steady

state, higher CTL efficiency requires less CTLs (and vice versa). The conclusion holds

even if both mechanisms are acting together but only if they are interdependent (i.e., the

efficiency of killing of infected cells is correlated with the efficiency of production of effector

cytokines and chemokines). However, if both mechanisms (killing and releasing cytokines)

are independent, then the variation in the efficiency of either effector mechanism will lead

1This follows from the fact that prior to HAART the majority of the virus is produced by productively

infected cells (Perelson et al., 1996).
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to variation in the measured life-span of infected cells.

Thus from the analysis follows that the variation in the life-span of productively in-

fected cells (or the absence of thereof) is indicative of the cytopathogenecity of a virus

only at a restricted set of assumptions and it is not yet clear whether those assumptions

are fulfilled for HIV.

The paper is structured as follows. In Section 4.2 we shortly describe the conventional

results on the virus dynamics during HAART and its interpretation. In Section 4.3 we

analyze a simple mathematical model describing the dynamics of virus-infected cells and

the immune response during HAART. In Section 4.4 we discuss the implications of main

results of the analysis and possible problems associated with the model and undertaken

approach.

4.2 Virus dynamics during HAART

A striking property of HIV infection is that during the asymptomatic period of several

years viremia (viral load in blood) remains approximately constant (Levy, 1998, p. 317-

321). The constant viremia, however, results from a balancing production and clearance

of the virus with more than 95% of the virus being turned over each day. This dynamic

property of HIV infection has been discovered using drugs that suppress virus replication,

namely reverse transcriptase and protease inhibitors (Wei et al., 1995; Ho et al., 1995;

Perelson, 2002).

When the drugs are administered, viral load declines in several phases (see Figure

4.1). First, there is an initial delay in the virus decline due to pharmacological and virus

life-cycle delays (Perelson et al., 1996; Herz et al., 1996; Nelson et al., 2001; Lloyd, 2001).

Then, during the first phase, viral load declines rapidly with the half-life time constant

∼ 1 day. The overall drop in viremia during this phase varies between patients whereas

the rate at which viral load declines is strikingly independent of a patient’s CD4 T cell

count (a representative of immune system health). Approximately one week later, there
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Figure 4.1: The dynamics of HIV during highly active antiretroviral therapy. It is assumed

that before day 10 the viral load is constant (asymptomatic phase) and then at day 10

the drugs suppressing virus replication are administered. During the phase I viral load

declines rapidly with the half-life time t1/2 = 0.8 day (this phase corresponds to the death

of productively infected cells). During the phase II, viral load declines more slowly with

the half-life time t1/2 = 30.7 days (representing the half-life of latently infected cells).

is a second slower phase during which viral load decreases with the average half-life time

of 15− 30 days (Perelson et al., 1997). It has been proposed that the virus decline during

the first phase represents the death of productively infected CD4 T cells whereas during

the second phase cells of other types (such as macrophages or latently infected CD4 T

cells) are being eliminated (Perelson et al., 1997). Although as it should be noted other

interpretations for the virus dynamics during HAART have also been suggested (Ferguson

et al., 1999; Grossman et al., 1999; Arnaout et al., 2000; Hlavacek et al., 2000; Muller

et al., 2001), in the following analysis we nevertheless assume that the virus decline in the

phase I (i.e., the first week of therapy) is due to death of productively infected cells. And

more specificly, we ask how the CTL response may affect the initial rate of virus decline

and therefore, the death rate of virus-infected cells.
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4.3 The model

Although it is not known what controls HIV during the asymptomatic phase CTLs are

thought to play some role in restricting virus replication (Koenig et al., 1995; Evans et al.,

1999; Jin et al., 1999; Metzner et al., 2000). There is a number of ways of how CTLs

may do that. First, HIV-specific CTLs can lyse virus-infected cells. Second, CTLs release

chemokines such as β-chemokines (MIP-1α, MIP-1β, RANTES) that can prevent infection

of new cells (Cocchi et al., 1995). Finally, CTLs release cytokines such as INF-γ that can

suppress the rate of virus production by virus-infected cells (Yang et al., 1997; Guidotti

and Chisari, 2001).

Since the last two mechanisms effectively reduce the rate of virus infection of uninfected

cells, we assume that CTLs affect virus replication in two major ways: by killing virus-

infected cells (lytic mechanisms) and by reducing the rate of virus replication (nonlytic

mechanisms). Since free HIV particles are short-lived (Perelson et al., 1996; Ramratnam

et al., 1999; Zhang et al., 1999) the virus concentration is approximately proportional to

the density of virus-infected cells. We also assume that the changes in the total number

of uninfected cells are small during the first week of HAART.

The remaining details of the model are as follows. Infected cells Y have per capita

growth rate r and the death rate due to viral cytopathogenecity α. The presence of the

immune response reduces the replication rate of the virus to r/(1 + aZ) where Z is the

number of CTLs controlling the virus and a is the efficiency of CTLs in reducing the virus

replication rate. Infected cell are also killed by CTLs at per capita rate h. Stimulation of

the immune response by the virus is described by a function f(Y, Z). The mathematical

model then becomes (see Appendix2 for a more general model):

Ẏ =
rY

1 + aZ
− αY − hY Z, (4.1)

Ż = f(Y, Z). (4.2)

2Available from the Royal Society website.
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During the chronic (asymptomatic) phase viral load (and most likely, the number of

T cells productively infected with HIV) is approximately constant; therefore, the steady

states of the model (4.1)–(4.2) should describe the asymptomatic phase of infection. These

steady states are:

r

1 + aZ
= α + hZ, f(Y , Z) = 0. (4.3)

Administration of drugs preventing the production of infective virions (protease in-

hibitors) and de novo infection (reverse transcriptase inhibitors) reduces the rate of virus

replication to the value (1− ρ)r with the drug efficiency ρ. Although the antiviral drugs

may interfere with the proliferation of T cells, the mechanism of this phenomenon is not

understood (Levy, 1998, pp. 354-356); for the simplicity, we assume that the drugs do

not affect the immune response directly. However, the decline in viral load can indirectly

affect the immune response. It has been shown that the number of HIV-specific CD8 T

cells (measured by MHC class I + specific peptide tetramers) declines during HAART

(Ogg et al., 1999; Casazza et al., 2001). It is not clear, however, whether the number of

functional CD8 T cells changes in accord. In the model we assume that the number of

CTLs changes from a steady state value given in eq. (4.3) with a per capita rate δ (which

can also be negative):

Ẏ = (1− ρ)
rY

1 + aZ
− αY − hY Z, (4.4)

Ż = f(Y, Z) ≈ −δZ. (4.5)

Since we do not know how CTLs control HIV, we consider three different scenarios:

when CTLs are only able to lyse infected cells (i.e., at h > 0 and a = 0), when CTLs can

only affect virus replication (i.e., h = 0 and a > 0), and when both mechanisms are used

by CTLs and are of the same order of magnitude.



94

CTLs only kill (a = 0)

Initially, we assume that the rate of CTL decline during HAART is small, i.e. δ � r (Ogg

et al., 1999; Casazza et al., 2001). Then the changes in the number of CTLs during initial

days of HAART are also small; therefore, we can replace the number of CTLs Z(t) by

its stationary value Z = (r − α)/h given in eq. (4.3) at a = 0. Then, the dynamics of

virus-infected cells simply become:

Ẏ = (1− ρ)rY − αY − hY Z ≈ (1− ρ)rY − αY − hY Z = −ρrY, (4.6)

We find that the rate at which the number of infected cells declines is independent of

the efficiency of the immune response h. This in turn happens because lower h require

more CTLs to control the virus (see eq. (4.3)) and vice versa. A similar result has been

obtained by Arnout et al. (2000). Moreover, the rate of virus decline is the product of the

rate of virus replication r and the drug efficacy ρ. Thus, the variation in the rate of virus

decline during the first phase can be simply because of the drug efficacy and growth rate

variation between different patients (Bonhoeffer et al., 1997).

If the rate of change of HIV-specific CTLs is not small (δ ∼ r), then the virus decline

is not strictly exponential (see Figure 4.2). Despite this fact, the initial decline rate is still

independent of the strength of the immune response h.

CTLs only reduce the virus replication rate (h = 0)

Similarly to the previous case, replacing Z(t) with its stationary value Z = (r − α)/(αa)

at h = 0 the dynamics of virus-infected cells become:

Ẏ = (1− ρ)
rY

1 + aZ
− αY ≈ (1− ρ)

rY

1 + aZ
− αY = −ραY, (4.7)

Here again the rate of decline is independent of the strength of the immune response

(now a), but now it is a product of the death rate of infected cells α and the drug efficacy

ρ.
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Figure 4.2: The influence of the immune response on the virus dynamics during HAART.

Panel A: the virus decline when the efficiency of the immune response varies. Three param-

eter combinations are shown: a = 0.1, h = 0 (only nonlytic mechanisms), a = 0.1 h = 0.02

(both lytic and nonlytic mechanisms), and a = 0, h = 0.02 (only lytic mechanisms). Two

rates of CTL decline are considered: δ = 10−3 (solid lines) and δ = 5 · 10−2 (dashed

lines). Panel B: the virus decline when saturation in the killing rate is considered (i.e., in

the equation (4.1) the term hY Z is replaced with hY Z/(1 + Y/K1 + Z/K2)). Saturation

in the killing rate on the density of infected cells leads to non-exponential virus decline

(K1 = 10−1, K2 = 103). Saturation in killing rate on the density of CTLs reduces the de-

cline rate (K1 = 103, K2 = 10−1) even when K1 = 10−1 (dashed line). Other parameters:

r = 1.2, α = 0.1, ρ = 0.9.
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CTLs kill and affect the virus replication rate (h > 0 and a > 0)

Applying the same technique as before at δ � r, we find:

Ẏ = (1− ρ)
rY

1 + aZ
− αY − hY Z ≈ (1− ρ)

rY

1 + aZ
− αY − hY Z = −ρ

rY

1 + aZ
, (4.8)

where Z =
(√

(αa− h)2 + 4rha− (αa + h)
)
/(2ha).

In this case, the rate of virus decline depends upon both parameters a and h, charac-

terizing the strength of the immune response. However, equation (4.8) can be rewritten

assuming h = c · a, where c is a constant:

Ẏ ≈ − rρ

1 +
(√

(α− c)2 + 4rc− α− c
)
/(2c)

Y. (4.9)

from which follows that the rate of virus decline depends only on the ratio of effector

cell efficiencies and not their absolute values. Importantly, if a and h vary independently

between different individuals leading to c = h/a varying from 0 to ∞, then the rate of

virus decline will also vary from ρα to ρr (Figure 4.2:A). A similar conclusion holds if

both effector mechanisms are correlated (i.e., h = c · a) but with a constant c different

between different patients. If either of these assumptions were true for HIV, the observed

small variation in the virus decline rate would imply that r ≈ α or almost all death of

virus-infected cells occurs because of virus cytopathogenecity. Unfortunately, as far as we

are aware it is not known whether there is a correlation between two effector mechanisms

for HIV-specific CTLs.

Thus, we find that whether the strength of the immune response controlling the virus

affects the measured life-span of virus-infected cells depends critically on how the virus is

controlled and whether effector mechanisms by which the virus is controlled are correlated.
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4.4 Discussion

In this paper we analyzed how the immune response, or more precisely, the variation in

the efficiency of the immune response, affects the rate of virus decline during the first

week of HAART. We found that the result critically depends on how the immune response

(CTLs in particular) control the virus. For instance, if CTLs only kill virus-infected

cells or only reduce the rate of virus replication (by releasing antiviral cytokines and

chemokines), then the variation in the killing/suppressing efficiently does not affect the

rate of virus decline. This is simply because at the steady state to control the virus, the

efficiency of the immune response (per effector cell) must be compensated by the number

of the virus-specific CTLs (see also Bucy (1999)). A similar conclusion holds even when

both mechanisms are acting and are correlated (i.e., h = const · a), with a coefficient

of proportionality being constant between different individuals. However, if the killing

efficiency is independent of the suppressing efficiency (i.e., h 6= const ·a) then independent

variation in h and a leads to variation in the rate of virus decline that is bounded by ρr and

ρα. Unfortunately, it is not clear if the release of cytokines and chemokines is correlated

with the release of perforin and granzymes for antigen-specific CD8 T cells. Although

both processes are triggered when there is an appropriate ligand for TCR, the conclusive

evidence on the linkage between two effector mechanisms as far as we are aware is still

lacking.

It is also important to note that although the model (4.1)–(4.2) does not include the

dynamics of the free virus and uninfected cells, the major conclusion holds in a more

general model (see Appendix). However, we find that functional changes in the killing

term such as to include saturation in the killing rate as the number of CTLs or infected

cells increases may affect the rate of virus decline (Figure 4.2:B). It is not clear, however,

whether saturation in the killing rate occurs in vivo. On the other hand, the functional

form of how CTLs reduce replication rate of the virus does not affect the major result (not

shown).



98

Fortunately, it is possible to test the presented mathematical model. The model pre-

dicts that the rate of virus decline during antiviral therapy should be independent of the

number of functional CTLs, specific to the virus, existed prior to treatment (see, for exam-

ple, eqns. (4.6) and (4.7)). For HIV infection, both viral load and the CTL number may

be accurately estimated (Piatak et al., 1993; Sun et al., 2003). If, however, the opposite

is found (i.e., the rate of decline is correlated with the number of functional CTLs specific

to the virus) this would imply that (1) both lytic and nonlytic mechanisms are involved in

controlling the virus, and (2) either the effector mechanisms are uncorrelated or correlation

is different in different patients (i.e., constant c varies between different patients).

It is also necessary to emphasize that despite the relative robustness of the model

predictions, there are several potential problems associated with the model as well as with

the undertaken approach.

1. The model assumes that the initial virus decline is due to the death of cells, pro-

ductively infected with the virus. In HIV infection, however, the virus decline may

be affected by the release of the virus from lymphoid tissues into blood and in some

circumstances may not represent the death of infected cells (Hlavacek et al., 2000;

Muller et al., 2001).

2. The key assumption of the model is that the virus and the immune response are at

the steady state prior to drug administration. Although it is most likely correct for

the total population sizes of the virus and HIV-specific CTLs, there might be a very

dynamical change in clone composition in both populations with new viral variants

arising and new CD8 T cell responses generated, i.e., the population structure of the

virus and CTLs may not be at the equilibrium.

3. The model in its simplest form predicts that the number of virus-specific CTLs is

determined by the parameters r, α, h, and a and as a consequence is independent

of viral load (see eq. (4.3)). This seems to contrast to experimental observation

where negative, positive, or no correlation between two quantities depending on the
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viral gene has been reported (Novitsky et al., 2003, and references therein). Since

underlying mechanisms of such a relationship have not been elucidated, we did not

investigate how the model can be modified to include these observations even though

such attempts have been made (Wodarz et al., 2001).

The analysis conducted in this paper in no regard should be considered as a providing

with the answer to whether HIV is cytopathic or not. Rather we tried to demonstrate that

in order to understand why a given virus is cytopathic a simple analysis or common logic

may simply be misleading. The dynamics of HIV and other infections such as HBV and

HCV during antiviral therapy are complex with the immune response most likely playing

an important role. Hopefully, future research will shed some light on whether the immune

response efficiency affects the rate of virus decline during HAART as well as on whether

HIV is controlled by the immune response during the asymptomatic phase and how such

control if it exists is managed.

4.5 Appendix: the virus dynamics in a more general

model

A more general model of the virus dynamics should include the dynamics of uninfected

target cells (X), infected cells (Y ), the free virus (V ), and the immune response (Z):

Ẋ = λ− dX − βXV

1 + a1Z
,

Ẏ =
βXV

1 + a1Z
− αY − hY Z, (4.10)

V̇ =
kY

1 + a2Z
− uV,

Ż = f(V, Y, Z).

In this model CTLs can affect virus replication via three different mechanisms: secre-

tion of chemokines and prevention of infection of uninfected cells by the virus (a1), release
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of cytokines such as INF-γ to reduce the virus burst size (a2) and direct killing of virus

infected cells through perforin-granzyme and Fas-FasL pathways (h). The independence of

the rate of virus decline during treatment of the CTL efficiency (h, a1 and a2) is achieved

only when all the parameters are correlated (i.e., h/a1 = const1 and h/a2 = const2). A

particular case of the model dynamics when a2 = 0 is shown in Figure 4.3.

The simplified model (4.1)–(4.2) given in the main text can be obtained using the

following approximations. First, because the free virus is short lived (Perelson et al.,

1996; Ramratnam et al., 1999; Zhang et al., 1999), i.e. u � 1, we can use a quasi steady

state assumption to obtain V (t) ≈ ku−1Y (t)/(1 + a2Z(t)). Assuming that the number

of uninfected cells, X(t), does not change significantly during first weeks of the therapy,

we replace X(t) with its stationary value X3. Finally, assuming a2 = 0 we arrive to the

model (1)–(2) with r = βXk/u and a = a1.

4.6 Publication status

Ganusov, V.V. (2003) The role of the CTL response and virus cytopathogenecity in the

virus decline during antiviral therapy. Proc Roy Soc Lond B 270: 1513–18

3At some parameter combinations, however, X(t) in the full model may dramatically increase during

HAART (see Figure 4.3:A). Although a similar increase has been observed for the CD4+ T cell number

in the blood, it most likely represents a redistribution of T cells from the lymphoid tissues into the blood

(Pakker et al., 1998; Bucy et al., 1999).



101

0 10 20 30 40
days

10-2

1

102

104

106

D
e
n
s
i
t
y

The dynamics of the full model

v

x

y

z

a1=0 a2=0 h=0.02

0 10 20 30 40
days

10-2

1

102

104

106

V
i
r
a
l
L
o
a
d
,
c
o
p
i
e
s
p
e
r
m
L

Varying immune response efficiency

only nonlytic
a1=0.1

only lytic
h=0.02

combined

a1=0.1 h=10- 4

a2=0

A B

Figure 4.3: The dynamics of the virus during HAART according to the full model. Panel

A: the dynamics of the virus V , uninfected cells X, virus-infected cells Y , and immune

response Z. At time t = 10 HAART is started by stopping new infections (β = 0).

Panel B: the virus decline when the efficiency of the immune response varies. Three

parameter combinations are shown: a1 = 0.1, h = 10−5 (only nonlytic mechanisms),

a1 = 0.1 h = 10−4 (both), and a1 = 0, h = 0.02 (only lytic mechanisms). In all cases

a2 = 0. Other parameters: λ = 1, d = 0.01, α = 0.05, β = 10−5, k = 106, u = 1.5,

δ = 10−3.
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Chapter 5

The rescaling method for quantifying

the turnover of cell populations

Abstract

The dynamic nature of immune responses requires the development of appropri-

ate experimental and theoretical tools to quantitatively estimate the division and

death rates which determine the turnover of immune cells. A number of papers

have used experimental data from BrdU and D-glucose labels together with a sim-

ple random birth-death model to quantify the turnover of immune cells focusing on

HIV/SIV infections (Mohri et al., 1998; Hellerstein et al., 1999; Bonhoeffer et al.,

2000; Mohri et al., 2001). We show how uncertainties in the assumptions of the

random birth-death model may lead to substantial errors in the parameters esti-

mated. We then show how more accurate estimates can be obtained from the more

recent CFSE data which allow to track the number of divisions each cell has under-

gone. Specifically, we: (i) describe a general stage-structured model of cell division

where the probabilities of division and death are functions of time since the previous

division; (ii) develop a rescaling method to identify invariant parameters (i.e. the

ones that are independent OF the specific functions describing division and death);

(iii) show how these invariant parameters can be estimated, and (iv) illustrate this

technique by applying it to CFSE data taken from the literature.



103

5.1 Introduction

Understanding the quantitative aspects of cell turnover is a long standing theoretical

problem. Specifically, we need a reliable analytical tool for estimating the rates of cell

division and cell death that govern the rate of change in the total cell population. In

immunology, for example, we would like to understand the mechanism of homeostatic

regulation OF immune memory which results in a nearly constant cell population. Does

such a population consist of quiescent cells or there is a balanced turnover of cells? If

turnover occurs, how do cells progress through the cell cycle so that division and death

processes balance each other?

Accurate quantification of the dynamics of antigen-specific B and T-lymphocytes in

vivo has become possible recently (Slifka and Ahmed, 1998; Murali-Krishna et al., 1999).

In addition, the development of CFSE1 dye dilution experiments has allowed for accurate

tracking of the number of divisions that a given cell has undergone following transfer

in vivo (Weston and Parish, 1990; Lyons and Parish, 1994; Lyons, 2000). When cells

are stained with CFSE, this fluoresecent dye is included into the cell cytoplasm. During

the process of division, the CFSE dye is diluted approximately equally between the two

daughter cells. For in vivo transfer experiments, the CFSE assay allows to accurately track

up to 5-10 successive generations of cells. Consequently, the CFSE technique provides a

significantly more accurate description of cell turnover compared to the earlier techniques

for measuring cell turnover such as BrdU, thymidine and D-glucose labelling (Mohri et al.,

1998; Hellerstein et al., 1999; Bonhoeffer et al., 2000; Mohri et al., 2001; Debacq et al.,

2002). There has been a widespread interest in using CFSE data to quantify the birth

and death processes underlying the dynamics of immune responses.

A common way to study the quantitative aspects of cell turnover is to formulate a

specific model for cell division and death and fit this model to the data. This approach

has two serious shortcomings. First, in the absence of a biologically validated model it

1Abbreviations used in this paper: CFSE, carboxyl fluorescein succimidyl ester; BrdU, bromodeoxyuri-

dine; FLM, fraction of labeled mitoses; SM, Smith-Martin; CI, confidence interval.
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may be hard to distinguish between the parameters estimated from different models (see

Section 5.2). Second, the data may be insufficient to unambiguously determine parameters

of the model, that is, several parameter combinations may fit the data equally well.

To formulate a biologically reasonable specific model of cell division, one must qual-

itatively describe the mechanisms that govern cell division and cell death. For example,

a very elegant quantitative model of cell turnover was formulated by Smith and Martin

(Smith and Martin, 1973) in their quantitative study of the FLM (fraction of labeled mi-

toses) curves in cell culture. In the Smith-Martin (or simply SM) model, the progression

of cells through the cell cycle involves a stochastic recruitment of cells from an A state

(approximately corresponding to G1 phase of the cell cycle) into the dividing B phase

(approximately equivalent to the S, G2, and M phases of the cycle). The dividing phase

has a fixed duration ∆. The recruitment of cells from the A-state into the B-phase occurs

at the fixed rate λ (the waiting time in the A state has exponential distribution with the

parameter λ). The two parameters λ and ∆ provide a complete description of cell division

(Cain and Chao, 1997a,b). While the SM model could be viewed as a reasonable first

approximation for the process of cell division, alternative models consistent with the FLM

data have also been proposed (Castor, 1980; Brooks et al., 1980; Grasman, 1990).

In contrast with cell division, our understanding of processes that regulate cell death

during the cell cycle is much poorer2. The simplest reasonable model might be with cell

death occuring at constant rates dA and dB during A-state and B-phase, respectively.

alternatively, cell death events may be restricted to discrete checkpoints within the A-

state and B-phase. Therefore, it is crucial to understand the consequences of making an

incorrect assumption for the death process.

In Section 5.2, we discuss some of the limitations of the widely used random birth-

death model for the analysis of BrdU and CFSE data (Mohri et al., 1998; Bonhoeffer

2The problem of understanding cell death in comparison with cell division is long standing (Monod,

1949) and stems in part from the fact that cells which have undergone division can be visualized, while

dead cells rapidly disappear being eliminated by apoptosis.
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et al., 2000; Mohri et al., 2001; Revy et al., 2001). We illustrate how different assumptions

on the timing of death in the cell cycle (as described above) can drastically alter our

estimates for the parameters describing cell division and cell death. One potential way to

solve this problem might be to estimate the parameters of the SM model by fitting the sm

model to the CFSE data.

This approach has two limitations.

1. It assumes that the SM model is correct. As we discussed above, while the pro-

gression through the cell division cycle is biologically reasonable we do not know if

the assumption that the death rates are constant during the A-state and B-phase is

correct.

2. The data on the total cell numbers and CFSE distributions is insufficient to estimate

all four parameters (λ, ∆, and death rates dA, dB).

In this paper, we use a different approach to solving the problem of estimation of

parameters describing cell division and death from the CFSE data. We propose a general

model of the cell cycle which makes no specific assumptions about the timing of cell

division and death except to say that the probability of division and death are functions

of the time since the previous division. We develop a method of rescaling (Section 5.3) to

analyze this general model and show how this method allows us to identify and estimate

kinetic parameters of the cell cycle that are independent of the specific mechanisms of cell

division and cell death. In Section 5.4 we explain, with an example, how our method can

be used. We will make available online a simple Mathematica program implementing our

method for other datasets. Finally, we go over the limitations of the current techniques in

the discussion section.
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5.2 Illustrating the problem

To illustrate the consequences of making different specific assumptions about the death

process, we consider two very simple models of the cell cycle. Both models are derived

from the SM model with a very short B-phase (for derivations see Appendix). In both

models, we let λ equal the rate of recruitment of cells from the A-state, and the average

division time (i.e. the mean duration of the cell cycle) is given by T = 1
λ
. In the first

model, we let d equal the death rate in the A-state and assume that there is no death in the

B-phase. This model serves as an approximation to the widely used random birth-death

model (Veiga-Fernandes et al., 2000; Bonhoeffer et al., 2000; Revy et al., 2001; Mohri

et al., 2001) where the probability rates of both cell division and death are constant. The

equations for xn(t), the number of cells in the nth division at time t are described by

dxn(t)

dt
= 2λxn−1(t)− (λ + d)xn(t), x0(0) = x0. (5.1)

The mathematical solution to (5.1) can be written as

xn(t) =
(2λt)n

n!
e−2λt︸ ︷︷ ︸

distribution

[
x0e

(λ−d)t
]

︸ ︷︷ ︸
total #

. (5.2)

The first model therefore predicts that the the total number of cells grows exponentially at

the rate (λ− d). The distribution in the number of cells that have undergone n divisions

by time t is Poisson, with the mean number of divisions that increases at the rate 2λ

over time, independently of the death rate. In the second model, we let λ equal the rate

of recruitment of cells from the A-state, but allow death to occur only in the very short

B-phase, resulting in the mortality of a fraction f of cells in the B-phase. This model can

be described by

dxn(t)

dt
= 2λ(1− f)xn−1(t)− λxn(t), x0(0) = x0. (5.3)

The mathematical solution to (5.3) is
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xn(t) =
(2λ(1− f)t)n

n!
e−2λ(1−f)t︸ ︷︷ ︸

distribution

[
x0e

λ(1−2f)t
]

︸ ︷︷ ︸
total #

(5.4)

Thus in the second model, the total number of cells grows exponentially at the rate

λ(1−2f). The distribution in the number of cells that have undergone n divisions by time

t is again Poisson, but the mean number of divisions now increases at the rate 2λ(1− f)

over time.

We see that in both models the distribution in the number of cells that have undergone

n divisions is Poisson. In both models, the mean generation time is given by T = 1/λ. In

the first model, the rate of increase in the mean number of divisions depends on λ whereas

in the second model it depends on both λ and f . Consequently, if we were to estimate the

mean generation time T using (5.1) or (5.3), we would obtain different estimates depending

on the underlying model. For example, in case of a stable population (λ = d in (5.1) and

f = 0.5 in (5.3)) we would obtain a two fold discrepancy in the estimate for T . Such

discrepancies will be even more pronounced for contracting populations. On the other

hand, the estimates obtained from both models would be equally ”significant” because

both models produce equally good fits to the data.

This example illustrates that in the absence of further knowledge on the nature of the

death process, we cannot estimate T with much confidence using only the data on the total

number of cells and the number of divisions they have undergone (such as given by the

CFSE data, for example). Given the uncertainties we have in the formulation of a specific

model, we would like to define quantities that describe the cell turnover independently of

the underlying model. In the following section, we do this by formulating a very general

model of the cell cycle and determining which quantities we can estimate from the CFSE

data.
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5.3 General stage-structured model of cell cycle

5.3.1 Formulation

We postulate a set of relatively general biological assumptions about the nature of cell

proliferation. We define cell division as an event when one mother cell leaves its generation

and at the same time two identical daughter cells enter the next generation3. We define cell

death as an event when one cell leaves its generation and no daugther cells are produced.

Using this terminology, we assume that (i) The cycle of a given cell terminates either by

cell division or by cell death. (ii) Cell division and cell death are independent random

events whose probabilities of occurence depend only on the time since the cell was born.

Specifically, such probabilities are independent of a particular cell and a given generation.

(iii) The probability that cell division and cell death occur simultaneously is negligibly

small. (iv) The system is closed, that is, new cells enter the population only through

division and cells leave the circulating pool only through death.

We introduce the nomenclature for the stage-structured model. We let xn(t, s) denote

the density of cells at time t that entered the n-th generation at time t − s. We refer

to s as the age of cells inside the generation. We let λ(s) denote the probability rate of

cell division at age s and d(s) denote the probability rate of cell death at age s inside the

generation. The dynamics of the cell density within the n-th generation is described by

the partial differential equation

∂xn(t, s)

∂t
+

∂xn(t, s)

∂s
= −(λ(s) + d(s))xn(t, s), n ≥ 0. (5.5)

The number of cells in the n-th generation that divide anywhere between the times t and

t + dt is given by

(∫ ∞

0
λ(s)xn(t, s) ds

)
dt,

3We refer to the cells which have undergone n divisions as cells in the nth generation.
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and therefore twice the number of cells enter the n + 1-st generation between t and t +

dt. Consequently, the dynamics of two consecutive generations are coupled through the

boundary condition

xn(t, 0) = 2
∫ ∞

0
λ(s)xn−1(t, s) ds, n ≥ 1. (5.6)

The set of equations (5.5-5.6) constitutes the general stage-structured model of the cell

cycle. Since the system is closed, no cells enter the 0-th generation, that is, x0(t, 0) = 0.

The dynamics of the cell density is governed by a set of linear partial differential

equations where the boundary condition (5.6) describes the rate at which cells enter the

n-th generation. Therefore, rescaling this rate by a factor of a ≥ 0 will result in the

identical rescaling of the cell density xn(t, s). Equivalently, the dynamics of the rescaled

cell densities xn(t, s, a) = anxn(t, s) must satisfy the equations

∂xn(t, s, a)

∂t
+

∂xn(t, s, a)

∂s
= −(λ(s) + d(s))xn(t, s, a). (5.7)

xn(t, 0, a) = 2a
∫ ∞

0
λ(s)xn−1(t, s, a) ds. (5.8)

The set of equations (5.7-5.8) constitutes the rescaled model of the cell cycle.

The biological meaning of the rescaling is intuitively simple: suppose that each mother

cell produces not 2 but 2a daughter cells, then the cell density in each subsequent genera-

tion will be rescaled by a factor of a relative to the cell density in the preceding generation.

In particular, the cell density in th n-th generation will be rescaled by a factor of an. Im-

portantly, such rescaling does not affect the distribution of division or death events within

a given generation, but only the rate of transfer of cells from one generation to the next.

In the next section, we show that for any nonnegative value of a, the rescaled model

(5.7-5.8) describes an exponentially growing or decaying population. We also show how one

can estimate parameters describing cell division and death from the relationship between

the net proliferation rate r(a) of the rescaled population and the value of a.
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5.3.2 Method of rescaling

A typical set of experimental data (e.g., obtained from CFSE experiments) is presented

as a time series for each generation of cells. We let Xn(t) =
∫∞
0 xn(t, s)ds denote the

total number of cells in n-th generation at time t and consider the rescaled time series

Xn(t, a) = anXn(t) with a ≥ 0. In the previous section, we explained that the time series

Xn(t) corresponds to the original model (5.5-5.6) if and only if the rescaled time series

Xn(t, a) corresponds to the rescaled model (5.7-5.8). The total population sizes are given

by

X(t) =
∞∑

n=0

Xn(t), X(t, a) =
∞∑

n=0

anXn(t),

respectively. Since (5.5-5.6) is a special case of (5.7-5.8) with a = 1, we analyze the more

general case a ≥ 0.

According to equations (5.7-5.8), the dynamics of the rescaled total cell density x(t, s, a) =∑∞
n=0 anxn(t, s) satisfies the classical von Foerster equation (von Foerster, 1959),

∂x(t, s, a)

∂t
+

∂x(t, s, a)

∂s
= −(λ(s) + d(s))x(t, s, a), (5.9)

x(t, 0, a) = 2a
∫ ∞

0
λ(s)x(t, s, a) ds. (5.10)

This model is also equivalent to the celebrated Lotka renewal equation (Sharpe and

Lotka, 1911) widely used in demographical applications (Keyfitz, 1985b,a). The model

(5.9-5.10) is linear, and therefore it predicts an asymptotically exponential net proliferation

of X(t, a) at a rate r(a) which will vary as we vary the value a (Bellman and Cooke, 1963).

The underlying relationship between r(a) and a is given by the characteristic equation of

the rescaled model

1 = 2a
∫ ∞

0
λ(s)e−Λ(s)−D(s)e−r(a)sds, (5.11)

where Λ(s) =
∫ s
0 λ(z) dz and D(s) =

∫ s
0 d(z) dz (Sharpe and Lotka, 1911) (We provide the

derivation of (5.11) in the Appendix). Note that r(a) is a strictly increasing function of a

for a ≥ 0.

In demographic applications, the functions Λ(s) and D(s) can be readily obtained

from the census data (Keyfitz, 1985a) which provides the age distrbution of individuals
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within one generation. In our application, the absence of such information (i.e. the age

distribution of cells within a single generation) is a major obstacle. Fortunately, the

CFSE data provide the age distribution of cells according to their division numbers. The

novelty and the advantage of the rescaling method is that it allows one to approximate

the characteristic equation (5.11) only using the distribution of cells by division numbers.

To approximate the characteristic equation from a given experimental time series Xn(t),

we generate a family of rescaled time series Xn(t, a), calculate the change in the total

population size X(t, a) with time, and evaluate the exponential proliferation rate r(a) for

each value of a. As a result, we can obtain the function r(a) by manipulating a single time

series of CFSE data.

5.3.3 Estimation of intrinsic parameters

With no additional assumptions on the model (5.5-5.6), we can estimate several intrinsic

kinetic parameters of the cell cycle. Estimation of intrinsic parameters can be performed

without specific knowledge of functions λ(s) and d(s). Such parameters include:

1. the fraction of cells that die in one generation (δ);

2. the mean generation time of surviving cells (τ).

Suppose that a cohort of N0 cells enters a given generation (simultaneously) at t = 0.

Equation (5.9) implies that the fraction of cells that have not divided and remain alive by

time s is equal to N(s) = N(0) exp(−Λ(s)−D(s)). Consequently, the number of cells in

this cohort that will eventually divide is given by

N1 =
∫ ∞

0
λ(s)N(s) ds = N0

∫ ∞

0
λ(s)e−Λ(s)−D(s)ds.

Assuming that in the absence of death all cells eventually divide (that is,
∫∞
0 λ(s)e−Λ(s) ds =

1), we find that the fraction of cells that die in one generation is given by δ = 1 − N1

N0
.

Consequently,



112

δ = 1−
∫ ∞

0
λ(s)e−Λ(s)−D(s)ds. (5.12)

Similarly, the fraction of cells that survive through one generation (and therefore divide)

is given by

1− δ =
∫ ∞

0
λ(s)e−Λ(s)−D(s)ds.

Let a∗ be the real root of r, that is, r(a∗) = 0. Equations (5.11) and (5.12) imply that

δ = 1− 1

2a∗
, 1− δ =

1

2a∗
. (5.13)

If not all cells die during one generation (i.e., δ < 1), we can define the mean generation

time for surviving cells as

τ =
1

1− δ

∫ ∞

0
sλ(s)e−Λ(s)−D(s)ds. (5.14)

In the Appendix, we show that

τ =
1

a∗r′(a∗)
. (5.15)

According to (5.13) and (5.15), the quantities δ and τ can be estimated from a given

experimental time series by first finding a∗ as the a-intercept of the graph r = r(a) and

then finding the slope to this graph at a = a∗.

In addition to the mean generation time for surviving cells τ , we can estimate the

variance of τ , that is, the variance of generation times for surviving cells. Such variance

is mathematically expressed as

σ2
τ =

1

1− δ

∫ ∞

0
s2λ(s)e−Λ(s)−D(s)ds− τ 2.

In the Appendix, we show that σ2
τ is given by

σ2
τ = τ 2

(
1 + (a∗)2r′′(a∗)τ

)
. (5.16)
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5.4 Illustration of the rescaling method

In this section, we analyze the time series for the dynamics of CFSE labeled P-14 transgenic

naive CD8 T cells after adoptive transfer into irradiated hosts (Figure 1 in (Murali-Krishna

and Ahmed, 2000)). The original data show that for the first week after transfer, cells grow

exponentially (r ≈ 0.28 day−1) and the mean number of divisions they have undergone

increases approximately linearly. The CFSE data is best represented as the table of the

number of cells having undergone n divisions at time t (Table 1).

t (days)

n (divisions)

xn(t) 0.5 1.25 3 8

0 7.38 7.07 1.77 0.0

1 0.0 0.64 6.10 0.29

2 0.0 0.0 6.58 5.71

3 0.0 0.0 1.28 19.97

4 0.0 0.0 0.0 18.83

5 0.0 0.0 0.0 7.99

6+ 0.0 0.0 0.0 4.00

Table 5.1: The dynamics of P-14 Tg CD8 T cells after adoptive transfer into irradiated

hosts (Murali-Krishna and Ahmed, 2000). The numbers above equal the number of cells

per spleen divided by 104.

To estimate the model independent parameters δ and τ we need to rescale the data

by a, where a varies from 0 upwards. This is done as follows: we multiply the number of

cells in division class n by an, for example for a = 2 the number of cells in each division

class is multiplied by 2n; in Table 5.1 for day 3 the rescaled numbers will be (1.77 104) · 20,

(6.10 104) ·21, (6.58 104) ·22, (1.28 104) ·23 and 0.0 ·24. Following recalculation of the entire

Table 5.1 for each a, and summing the number of cells in each division, the exponential

growth rate r(a) can be computed for that value of a (see Figure 5.1). From the plot of
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r(a) as a function of a we estimate a∗ which equals the a-intersept and r′(a∗) which equals

the slope of r(a) at a∗, allowing us to estimate δ and τ using equations (5.13) and (5.15)

respectively.

We applied the rescaling method to the data on the dynamics of Tg CD8 T cells during

proliferation in lymphopenic hosts to estimate the relationship between a and r(a). For a

list of values a (from a = 0.2 to a = 1), we fitted the logarithmic time series ln(X(t, a))

with a linear function and used the resulting slope as the estimate for r(a) (Figure 5.1).

The estimated graph of a vs. r(a) is shown by a bold solid line in Figure 5.2. The

thin dashed lines represent the 67% confidence intervals for r(a) which were calculated as

standard errors for estimated rate r at a given a.

The value a∗ at which the rate of exponential increase is zero is 0.549. Thus we esti-

mated a∗ = 0.549 with 67% confidence intervals (0.546, 0.551) (these values are a-intercepts

of 67% CI for r(a), i.e., values at which dashed curves in Figure 5.2 intercept zero). Con-

sequently, we can estimate δ = 0.089 with the same small error (CI = (0.085, 0.092)).

Thus, approximately 9% of the cells die on average during a single cell cycle in these

experimental settings.

We estimated the slope of the function r(a) at a∗ = 0.549 using a five-point difference

scheme (from a∗ − 2∆a to a∗ + 2∆a with a step ∆a = 0.02; other small steps gave

approximately the same result) and found that r′(a∗) = 0.782. To obtain the confidence

intervals for r′(a∗), we again used the five-point difference scheme but now for 67% CI of

r(a) to calculate the slopes r′+(a∗) and r′−(a∗). We found the 67% confidence intervals for

r′(a∗) to be: (0.733, 0.831). Next, we estimated the the mean generation time τ = 1
a∗r′(a∗)

as τ = 2.33 days. The 67% confidence intervals for τ were (2.18, 2.50). From this CFSE

time series we can conclude that following transfer of CD8 T cells into irradiated hosts

approximately 9% die per cell cycle, and the average division time for surviving cells is

approximately 2.3 days.



115

0 2 4 6 8
days

10

10.5

11

11.5

12

L
o
g
t
o
t
a
l
n
u
m
b
e
r

a=0.4
r ' =-0.130 H-0.141 , -0.119 L

a=0.7
r ' =0.110 H0.100 , 0.116 L

Figure 5.1: The change in the total population size of the rescaled population (with a = 0.4

and a = 0.7) with time using the data in Table 5.1. The regression lines for the total size

increase are shown (r′ is the mean slope; the 67% confidence intervals for the slope are in

brackets).

5.5 Discussion

We have shown how the existing experimental data on the dynamics of cell populations

and the number of divisions they have undergone can give us a quantitative picture of

the underlying processes of cell division and cell death. We have argued that the prob-

lem is harder than previously thought (Gett and Hodgkin, 2000; Veiga-Fernandes et al.,

2000; Revy et al., 2001). The reason is that making accurate estimates of parameters

requires having a biologically reasonable quantitative model of both cell division and cell

death. While the features of cell division can be quantitatively described (at least to a

first approximation) much less is known about cell death. We have shown that choosing

different, biologically plausible scenarios for cell death can lead to large inaccuracies in the

estimation of the parameters of both cell division and cell death.

As the next step, we have investigated a general class of stage structured models, where

the division and death of a cell are random variables that depend only on the time since cell

division. For this class of models, we have introduced the method of rescaling, identified
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Figure 5.2: The plot of a vs. r(a) obtained from the Tg cells data (see Table 5.1). The bold

solid line is the graph r = r(a) obtained from the data. The 67% confidence intervals for

r(a) are represented by the thin dashed lines. From this graph, we estimated the average

survival as 1− δ = 0.91 and the mean generation time of surviving cells τ = 2.33 days.

parameters that are independent of the particular mechanisms of cell division and cell

death, and shown how they can be estimated from the CFSE data. These parameters

are the fraction of cells which die per cell cycle (δ) and the average time that surviving

cells take to complete the cell cycle (τ). We should, however, note that these are not

the only invariant parameters, but have been chosen because they have a clear biological

interpretation. Other parameters such as the variance of generation times for surviving

cells σ2
τ can also be obtained from the characteristic equation r = r(a).

Due to the linearity of the model (5.9-5.10), the total population size X(t) should

acquire a phase of exponential change after a short transient (Bellman and Cooke, 1963).

The rescaling method is based on the assumption that the population is in an exponential

phase of its growth, and therefore it can be applied only to the data in which the total

population size changes exponentially (i.e., increases, declines, or stays constant). Using

the CFSE data we can calculate the rate of exponential increase of the total population size
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r(a) if each cell divides not in 2 but in 2a daughter cells for each value of a by renormalizing

the CFSE data. The value of a at which the rescaled population size does not change (a∗),

the slope and curvature of the experimental curve r(a) at this point (r′(a∗) and r′′(a∗))

allow us to estimate δ, τ , and σ2
τ .

The rescaling method allows us to estimate the invariant parameters in a very general

case where we make no specific assumptions about how and when cells divide and die.

Once a more detailed mechanistic model of cell division and death is validated then the

parameters of such a model could be estimated. However, our present lack of information

about cell death precludes formulating such a model.

Limitations of the rescaling method

The rescaling method is considerably more general than existing methods to analyze cell

turnover. Nevertheless, it has several important limitations.

1. The CFSE assay can only detect up to a maximum of 5-10 divisions (Lyons, 2000)

(after this, the CFSE dye becomes so dilute that it cannot be detected above the

background) and this causes truncation errors. The truncation errors result from

excluding cell counts with higher division numbers from the total population. It is

therefore important that the CFSE measurements are obtained prior to such trun-

cations having occurred.

2. In formulating the general model of cell turnover and the rescaling method we assume

that the cell turnover is independent of both time and number of divisions. This may

not be always valid, for example, as in the case of programmed immune responses

(Kaech and Ahmed, 2001; van Stipdonk et al., 2001).

3. The rescaling method evaluates the function r(a) assuming that the total population

size changes exponentially and disregards the transient effects.

4. The rescaling method cannot be used to analyze the data obtained with such com-

monly used labels of cell division as BrdU or D-glucose because these labels do not
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allow the quantification of the number of divisions that cells have undergone. Thus

it is easier to point out the limitations of the earlier models for the analysis of BrdU

data than to suggest ways in which the analysis can be improved.

5. The rescaling method described can only be applied to a homogenous population of

cells. Some of the problems associated with measurement of turnover of heterogenous

populations of cells using BrdU labeling have been elegantly considered by Asquith

and coworkers (Asquith et al., 2002).

Existing analysis of CFSE data

Prior to this work, the CFSE data has been interpreted using two different approaches.

For completeness, we describe them here. One approach is based on a purely statistical

description of the data. Such description includes the dynamics of the mean number of

divisions for surviving cells, the variance in the number of divisions for surviving cells,

and the changes in the total number of precursors (obtained by dividing the number of

cells undergone n divisions by 2n) (Gett and Hodgkin, 2000). The model of cell division

and death used by Gett and Hodgkin (2000) may serve as an alternative to the model

presented in this paper. Gett and Hodgkin analyzed the CFSE data assuming that once

a cell commits to division, it continues to divide in equal intervals of time and concluded

that the rate at which cells commit to division follows a normal curve. These two models

can be distinguished by qualifying the variance in the number of divisions for surviving

cells. The general model of the cell cycle predicts a permanent increase in the variance

while the model of Gett and Hodgkin predicts that after a transient increase this variance

will remain nearly constant. Another approach is to fit the random birth-death model to

the CFSE data (Veiga-Fernandes et al., 2000; Revy et al., 2001). This approach includes

the estimation of the division and death rates (assuming that they are constant). We have

demonstrated that the parameter estimation performed in this fashion largely depends on

the specific underlying model of cell division and death. Discrepancies in the underlying

model often lead to large inaccuracies in the resulting estimates. In particular, we note
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that broad inferences such as that of Revy et. al. (2001) suggesting that ”relative sizes

of the CFSE peaks do not depend on the death rate and can be used to unambiguously

determine the mean division time”, are not generally valid.

We have emphasized our lack of a quantitative understanding of cell death and ex-

plained why the CFSE data alone cannot provide any insights into the regulation of cell

death during the cell cycle. We hope that this theory will be instrumental in designing

direct experimental studies that would elucidate such mechanisms of regulation. For in-

stance, in vitro FLM studies of immune cell populations in expansion and contraction

phases might give us a better understanding of where cell death occurs in the cell cycle.

Such studies might allow us to generate a biologically valid explicit model for cell death

and stimulate the development of quantitative methods for the estimation of the specific

parameters of the model from the data.

5.6 Appendix: Mathematical derivations

5.6.1 Derivation of two limiting cases of the SM model

The original SM model is formulated as a set of differential equations:

dAn(t)

dt
= 2bn−1(t, ∆)− (λ + dA)An(t), (5.17)

∂bn(t, s)

∂t
+

∂bn(t, s)

∂s
= −dBbn(t, s), 0 < s < ∆, bn(t, 0) = λAn(t), (5.18)

where n is the number of divisions that a given cell has undergone by time t. An(t) is the

number of cells in the A-state and bn(t, s) is the fraction of cells that entered the B-phase at

time t−s. The amount of time that cells spend in the A-state is exponentially distributed

with parameter λ. All cells spend a constant amount of time (∆) in the B-phase. The

mean generation time (i.e. the mean duration of the cell cycle) is given by T = 1
λ

+∆. All

cells divide when they reach the end of the B-state and their daughter cells immediately

re-enter the A-state of the next generation. The total number of cells in the B-phase is
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given by Bn(t) =
∫∆
0 bn(t, s) ds. The death rates in A-state and B-phase are constant and

denoted by dA and dB. One can reduce the SM model by expressing bn(t, s) in terms of

An(t) as

bn(t, s) = λe−dBsAn(t− s), 0 < s < ∆, (5.19)

and replace equations (5.17-5.18) by

dAn(t)

dt
= 2λe−dB∆An−1(t−∆)− (λ + dA)An(t).. (5.20)

Bn(t) = λ
∫ ∆

0
e−dBsAn(t− s) ds. (5.21)

In (5.20), the factor e−dB∆ is the fraction of cells that survive in the B-phase.

Now we consider two limiting cases of the model (5.20-5.21) as ∆ becomes infinitesi-

mally small. Letting xn(t) = An(t)+Bn(t), we observe that due to equation (5.21), in the

limiting case ∆ → 0 we also have An(t) → xn(t) and An−1(t−∆) → xn−1(t).

Model 1. In the first limiting case (Model 1), we let d = dA = dB so that the death

rate is constant throughout the cell cycle. In the limit ∆ → 0, equation (5.20) is replaced

by

dxn(t)

dt
= 2λxn−1(t)− (λ + d)xn(t), x0(0) = x0. (5.22)

Model 2. In the second limiting case (Model 2), we let dA = 0 so that there is no cell

mortality in the A-state and assume that e−dB∆ → 1− f as ∆ → 0. Here f is a limiting

fraction of cells that die in the B-phase. This model is described by

dxn(t)

dt
= 2λ(1− f)xn−1(t)− λxn(t), x0(0) = x0. (5.23)
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5.6.2 The characteristic equation

To derive the characteristic equation of (5.9-5.10), we substitute x(t, s, a) = y(s, a)er(a)t

into (5.9). Since the partial derivatives of x(t, s, a) are given by

∂x(t, s, a)

∂t
= r(a)y(s, a)er(a)t,

∂x(t, s, a)

∂s
=

∂y(s, a)

∂s
er(a)t,

y(s, a) is a solution of

∂y(s, a)

∂s
= −(λ(s) + d(s) + r(a))y(s, a), s ≥ 0.

Solving this equation for y, we find that

y(s, a) = y(0, a)e−Λ(s)−D(s)e−r(a)s, (5.24)

where Λ(s) =
∫ s
0 λ(z) dz and D(s) =

∫ s
0 d(z) dz. Substituting (5.24) into (5.10), we obtain

the equation

er(a)ty(0, a) = 2aer(a)ty(0, a)
∫ ∞

0
λ(s)e−Λ(s)−D(s)e−r(a)s ds.

Since er(a)ty(0, a) 6= 0, we cancel this quantity on both sides of the above equation to

obtain the final form of the characteristic equation

1 = 2a
∫ ∞

0
λ(s)e−Λ(s)−D(s)e−r(a)s ds. (5.25)

5.6.3 The expressions for τ and σ2
τ

To derive the expression for τ , we differentiate (5.25) with respect to a to obtain

0 = 2
∫ ∞

0
λ(s)e−Λ(s)−D(s)e−r(a)s ds− 2ar′(a)

∫ ∞

0
sλ(s)e−Λ(s)−D(s)e−r(a)s ds. (5.26)

We substitute a = a∗ and r(a∗) = 0 into (5.26) and obtain

0 =
1

a∗
− 2a∗r′(a∗)(1− δ)τ.

Using the fact that 2a∗(1− δ) = 1, we find that

τ =
1

a∗r′(a∗)
. (5.27)
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To derive the expression for σ2
τ , we differentiate (5.26) with respect to a to obtain

0 = −2r′(a)
∫ ∞

0
sλ(s)e−Λ(s)−D(s)e−r(a)s ds

+2a(r′(a))2
∫ ∞

0
s2λ(s)e−Λ(s)−D(s)e−r(a)s ds (5.28)

−2(r′(a) + ar′′(a))
∫ ∞

0
sλ(s)e−Λ(s)−D(s)e−r(a)s ds.

We substitute a = a∗, r(a∗) = 0, and (5.27) into (5.28) and find that

1

1− δ

∫ ∞

0
s2λ(s)e−Λ(s)−D(s)ds = τ 2(2 + (a∗)2r′′(a∗)τ).

Finally, we compute

σ2
τ =

1

1− δ

∫ ∞

0
s2λ(s)e−Λ(s)−D(s)ds− τ 2 = τ 2

(
1 + (a∗)2r′′(a∗)τ

)
. (5.29)

5.7 Publication status

Accepted to publication: Pilyugin, S. S., Ganusov, V.V., Murali-Krishna, K., Ahmed,

R. and R. Antia (2003) The rescaling method for quantifying the turnover of cell popula-

tions. J Theor Biol
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